Skip to main content

Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy, and Future Directions

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

Real-time geospatial applications are ever-increasing with modern Information and Communication Technology. Latency and Quality of Service-aware these applications are required to process at the edge of the networks, not at the central cloud servers. Edge and fog nodes of the networks are capable enough for caching the frequently accessed small volume geospatial data, processing with lightweight tools and libraries. Finally, display the image of the processed geospatial data at the edge devices according to the user’s Point of Interest. Several kinds of research are going on edge and fog computing, especially in the geospatial aspects. Health monitoring, weather prediction, emergency communication, disaster management, disease expansion are examples of geospatial real-time applications. In this chapter, we have investigated the existing work in the edge and fog computing with the geospatial paradigm. We propose a taxonomy on related works. At the end of this chapter, we discuss the limitations and future direction of the geospatial edge and fog computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Yang and Q. Huang, Spatial cloud computing: a practical approach. CRC Press, 2013.

    Book  Google Scholar 

  2. M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for iot: Review, enabling technologies, and research opportunities,” Future Generation Computer Systems, vol. 87, pp. 278–289, 2018.

    Article  Google Scholar 

  3. H. Das, R. K. Barik, H. Dubey, and D. S. Roy, Cloud Computing for Geospatial Big Data Analytics: Intelligent Edge, Fog and Mist Computing. Springer, 2018, vol. 49.

    Google Scholar 

  4. A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, “Fog computing: Principles, architectures, and applications,” in Internet of things. Elsevier, 2016, pp. 61–75.

    Google Scholar 

  5. Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low latency in collaborative edge computing,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3512–3524, 2018.

    Article  Google Scholar 

  6. W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey,” Future Generation Computer Systems, vol. 97, pp. 219–235, 2019.

    Article  Google Scholar 

  7. L. Klein, “Geospatial internet of things: Framework for fugitive methane gas leaks monitoring,” in International Conference on GIScience Short Paper Proceedings, vol. 1, no. 1, 2016.

    Google Scholar 

  8. R. Barik, H. Dubey, S. Sasane, C. Misra, N. Constant, and K. Mankodiya, “Fog2fog: augmenting scalability in fog computing for health gis systems,” in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). IEEE, 2017, pp. 241–242.

    Google Scholar 

  9. R. K. Barik, H. Dubey, and K. Mankodiya, “SOA-FOG: secure service-oriented edge computing architecture for smart health big data analytics,” in 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2017, pp. 477–481.

    Google Scholar 

  10. T. N. Gia and M. Jiang, “Exploiting fog computing in health monitoring,” Fog and Edge Computing: Principles and Paradigms, pp. 291–318, 2019.

    Google Scholar 

  11. T. Tsubaki, R. Ishibashi, T. Kuwahara, and Y. Okazaki, “Effective disaster recovery for edge computing against large-scale natural disasters,” in 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2020, pp. 1–2.

    Google Scholar 

  12. D. Chemodanov, P. Calyam, and K. Palaniappan, “Fog computing to enable geospatial video analytics for disaster-incident situational awareness,” Fog Computing: Theory and Practice, pp. 473–503, 2020.

    Google Scholar 

  13. M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and A. F. Skarmeta, “Smart farming iot platform based on edge and cloud computing,” Biosystems engineering, vol. 177, pp. 4–17, 2019.

    Article  Google Scholar 

  14. P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and challenges,” 2015.

    Google Scholar 

  15. C. Chang, S. N. Srirama, and R. Buyya, “Internet of things (iot) and new computing paradigms,” Fog and edge computing: principles and paradigms, pp. 1–23, 2019.

    Google Scholar 

  16. M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

    Article  Google Scholar 

  17. E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy, “Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study,” IEEE access, vol. 5, pp. 9882–9910, 2017.

    Article  Google Scholar 

  18. M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource management approaches in fog computing: a comprehensive review,” Journal of Grid Computing, pp. 1–42, 2019.

    Google Scholar 

  19. C.-H. Hong and B. Varghese, “Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

    Article  Google Scholar 

  20. P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key technologies, applications and open issues,” Journal of network and computer applications, vol. 98, pp. 27–42, 2017.

    Article  Google Scholar 

  21. P. Jiang, T. Fana, H. Gao, W. Shi, L. Liu, C. Crin, and J. Wan, “Energy aware edge computing: A survey,” Computer Communications, vol. 151, pp. 556–580, 2020.

    Article  Google Scholar 

  22. F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog computing in healthcare–a review and discussion,” IEEE Access, vol. 5, pp. 9206–9222, 2017.

    Article  Google Scholar 

  23. C. Li, Y. Xue, J. Wang, W. Zhang, and T. Li, “Edge-oriented computing paradigms: A survey on architecture design and system management,” ACM Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–34, 2018.

    Article  Google Scholar 

  24. R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and future directions,” in Internet of everything. Springer, 2018, pp. 103–130.

    Google Scholar 

  25. R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application management in fog computing environments: A taxonomy, review and future directions,” ACM Computing Surveys, 2020.

    Google Scholar 

  26. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A comprehensive survey on fog computing: State-of-the-art and research challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416–464, 2017.

    Article  Google Scholar 

  27. M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Fundamental, network applications, and research challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1826–1857, 2018.

    Article  Google Scholar 

  28. R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architectures, requirements, and research directions,” IEEE access, vol. 6, pp. 47 980–48 009, 2018.

    Google Scholar 

  29. S. B. Nath, H. Gupta, S. Chakraborty, and S. K. Ghosh, “A survey of fog computing and communication: current researches and future directions,” arXiv preprint arXiv:1804.04365, 2018.

    Google Scholar 

  30. O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K. R. Choo, and M. Dlodlo, “From cloud to fog computing: A review and a conceptual live vm migration framework,” IEEE Access, vol. 5, pp. 8284–8300, 2017.

    Article  Google Scholar 

  31. C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing for the internet of things: A survey,” ACM Transactions on Internet Technology (TOIT), vol. 19, no. 2, pp. 1–41, 2019.

    Article  Google Scholar 

  32. C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. Vasilakos, “Fog computing for sustainable smart cities: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1–43, 2017.

    Article  Google Scholar 

  33. R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges,” Future Generation Computer Systems, vol. 78, pp. 680–698, 2018.

    Article  Google Scholar 

  34. S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The extended cloud: Review and analysis of mobile edge computing and fog from a security and resilience perspective,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2586–2595, 2017.

    Article  Google Scholar 

  35. A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing and related edge computing paradigms: A complete survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, 2019.

    Article  Google Scholar 

  36. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646, 2016.

    Article  Google Scholar 

  37. P. Zhang, M. Zhou, and G. Fortino, “Security and trust issues in fog computing: A survey,” Future Generation Computer Systems, vol. 88, pp. 16–27, 2018.

    Article  Google Scholar 

  38. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616, 2009.

    Article  Google Scholar 

  39. Z. Liu, “Typical characteristics of cloud gis and several key issues of cloud spatial decision support system,” in 2013 IEEE 4th International Conference on Software Engineering and Service Science. IEEE, 2013, pp. 668–671.

    Google Scholar 

  40. A. Rezgui, Z. Malik, and C. Yang, “High-resolution spatial interpolation on cloud platforms,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing, 2013, pp. 377–382.

    Google Scholar 

  41. K. Evangelidis, K. Ntouros, S. Makridis, and C. Papatheodorou, “Geospatial services in the cloud,” Computers & Geosciences, vol. 63, pp. 116–122, 2014.

    Article  Google Scholar 

  42. J. Das, A. Dasgupta, S. K. Ghosh, and R. Buyya, “A geospatial orchestration framework on cloud for processing user queries,” in 2016 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). IEEE, 2016, pp. 1–8.

    Google Scholar 

  43. Z. Li, C. Yang, Q. Huang, K. Liu, M. Sun, and J. Xia, “Building model as a service to support geosciences,” Computers, Environment and Urban Systems, vol. 61, pp. 141–152, 2017.

    Article  Google Scholar 

  44. T. Xing, S. Zhang, and L. Tao, “Cloud-based spatial information service architecture within lbs,” Positioning, vol. 2014, 2014.

    Google Scholar 

  45. Y. Shi and F. Bian, “The design and application of the gloud gis,” in International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem. Springer, 2014, pp. 56–67.

    Google Scholar 

  46. Y. Wang, S. Wang, and D. Zhou, “Retrieving and indexing spatial data in the cloud computing environment,” in IEEE International Conference on Cloud Computing. Springer, 2009, pp. 322–331.

    Google Scholar 

  47. L.-Y. Wei, Y.-T. Hsu, W.-C. Peng, and W.-C. Lee, “Indexing spatial data in cloud data managements,” Pervasive and Mobile Computing, vol. 15, pp. 48–61, 2014.

    Article  Google Scholar 

  48. V. Siládi, L. Huraj, N. Polčák, and E. Vesel, “A parallel processing of spatial data interpolation on computing cloud,” in Proceedings of the Fifth Balkan Conference in Informatics, 2012, pp. 193–198.

    Google Scholar 

  49. R. C. Mateus, T. L. L. Siqueira, V. C. Times, R. R. Ciferri, and C. D. de Aguiar Ciferri, “Spatial data warehouses and spatial olap come towards the cloud: design and performance,” Distributed and parallel databases, vol. 34, no. 3, pp. 425–461, 2016.

    Article  Google Scholar 

  50. S. J. Park and J. S. Yoo, “Leveraging cloud computing for spatial association mining,” in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2014, pp. 4152–4153.

    Google Scholar 

  51. Y. Zhong, J. Han, T. Zhang, and J. Fang, “A distributed geospatial data storage and processing framework for large-scale webgis,” in 2012 20th International Conference on Geoinformatics. IEEE, 2012, pp. 1–7.

    Google Scholar 

  52. R. Sugumaran, J. Burnett, and A. Blinkmann, “Big 3D spatial data processing using cloud computing environment,” in Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data, 2012, pp. 20–22.

    Google Scholar 

  53. G. Zhang, Q. Huang, A.-X. Zhu, and J. H. Keel, “Enabling point pattern analysis on spatial big data using cloud computing: optimizing and accelerating ripley’s k function,” International Journal of Geographical Information Science, vol. 30, no. 11, pp. 2230–2252, 2016.

    Article  Google Scholar 

  54. S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query processing in cloud,” in 2015 31st IEEE International Conference on Data Engineering Workshops. IEEE, 2015, pp. 34–41.

    Google Scholar 

  55. S. You, J. Zhang, and L. Gruenwald, “Spatial join query processing in cloud: Analyzing design choices and performance comparisons,” in 2015 44th International Conference on Parallel Processing Workshops. IEEE, 2015, pp. 90–97.

    Google Scholar 

  56. J. Das, A. Dasgupta, S. K. Ghosh, and R. Buyya, “A learning technique for vm allocation to resolve geospatial queries,” in Recent Findings in Intelligent Computing Techniques. Springer, 2019, pp. 577–584.

    Google Scholar 

  57. V. Prokhorenko and M. A. Babar, “Architectural resilience in cloud, fog and edge systems: A survey,” IEEE Access, vol. 8, pp. 28 078–28 095, 2020.

    Google Scholar 

  58. M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation offloading at ad hoc cloudlet: architecture and service modes,” IEEE Communications Magazine, vol. 53, no. 6, pp. 18–24, 2015.

    Article  Google Scholar 

  59. A. Mukherjee, D. G. Roy, and D. De, “Mobility-aware task delegation model in mobile cloud computing,” The Journal of Supercomputing, vol. 75, no. 1, pp. 314–339, 2019.

    Article  Google Scholar 

  60. J. Michel and C. Julien, “A cloudlet-based proximal discovery service for machine-to-machine applications,” in International Conference on Mobile Computing, Applications, and Services. Springer, 2013, pp. 215–232.

    Google Scholar 

  61. J. Das, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Geo-cloudlet: Time and power efficient geospatial query resolution using cloudlet,” in 2019 11th International Conference on Advanced Computing (ICoAC). IEEE, 2019, pp. 180–187.

    Google Scholar 

  62. M. Uehara, “Mist computing: Linking cloudlet to fogs,” in International Conference on Computational Science/Intelligence & Applied Informatics. Springer, 2017, pp. 201–213.

    Google Scholar 

  63. J. S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, and E. Calis, “The benefits of self-awareness and attention in fog and mist computing,” Computer, vol. 48, no. 7, pp. 37–45, 2015.

    Article  Google Scholar 

  64. R. K. Barik, A. Tripathi, H. Dubey, R. K. Lenka, T. Pratik, S. Sharma, K. Mankodiya, V. Kumar, and H. Das, “MistGIS: Optimizing geospatial data analysis using mist computing,” in Progress in Computing, Analytics and Networking. Springer, 2018, pp. 733–742.

    Google Scholar 

  65. R. K. Barik, A. C. Dubey, A. Tripathi, T. Pratik, S. Sasane, R. K. Lenka, H. Dubey, K. Mankodiya, and V. Kumar, “Mist data: leveraging mist computing for secure and scalable architecture for smart and connected health,” Procedia Computer Science, vol. 125, pp. 647–653, 2018.

    Article  Google Scholar 

  66. J. Das, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Spatio-fog: A green and timeliness-oriented fog computing model for geospatial query resolution,” Simulation Modelling Practice and Theory, vol. 100, article no. 102043, 2020.

    Google Scholar 

  67. S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Mobi-IoST: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications,” IEEE Transactions on Network Science and Engineering, 2019.

    Google Scholar 

  68. M. Mishra, S. K. Roy, A. Mukherjee, D. De, S. K. Ghosh, and R. Buyya, “An energy-aware multi-sensor geo-fog paradigm for mission critical applications,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–19, 2019.

    Google Scholar 

  69. A. Olasz and B. Nguyen Thai, “Geospatial big data processing in an open source distributed computing environment,” PeerJ Preprints, vol. 4, p. e2226v1, 2016.

    Google Scholar 

  70. E. M. Xavier, F. J. Ariza-López, and M. A. Ureña-Cámara, “A survey of measures and methods for matching geospatial vector datasets,” ACM Computing Surveys (CSUR), vol. 49, no. 2, pp. 1–34, 2016.

    Article  Google Scholar 

  71. M. R. Palattella, R. Soua, A. Khelil, and T. Engel, “Fog computing as the key for seamless connectivity handover in future vehicular networks,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, 2019, pp. 1996–2000.

    Google Scholar 

  72. X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog computing: A viewpoint of vehicles as the infrastructures,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873, 2016.

    Article  Google Scholar 

  73. N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined networking-based vehicular adhoc network with fog computing,” in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE, 2015, pp. 1202–1207.

    Google Scholar 

  74. M. Arif, G. Wang, V. E. Balas, O. Geman, A. Castiglione, and J. Chen, “Sdn based communications privacy-preserving architecture for vanets using fog computing,” Vehicular Communications, p. 100265, 2020.

    Google Scholar 

  75. S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and issues,” in Proceedings of the 2015 workshop on mobile big data, 2015, pp. 37–42.

    Google Scholar 

  76. P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

    Article  Google Scholar 

  77. B. Wu, X. Wu, and J. Huang, “Geospatial data services within cloud computing environment,” in 2010 International Conference on Audio, Language and Image Processing. IEEE, 2010, pp. 1577–1584.

    Google Scholar 

  78. L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient resource management in fog computing supported medical cyber-physical system,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 1, pp. 108–119, 2015.

    Article  Google Scholar 

  79. S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,” in International conference on wireless algorithms, systems, and applications. Springer, 2015, pp. 685–695.

    Google Scholar 

  80. P. Bhattacharya, S. Tanwar, R. Shah, and A. Ladha, “Mobile edge computing-enabled blockchain frameworka survey,” in Proceedings of ICRIC 2019. Springer, 2020, pp. 797–809.

    Google Scholar 

  81. Q. Li, S. Meng, S. Zhang, J. Hou, and L. Qi, “Complex attack linkage decision-making in edge computing networks,” IEEE Access, vol. 7, pp. 12 058–12 072, 2019.

    Google Scholar 

  82. T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A secure iot service architecture with an efficient balance dynamics based on cloud and edge computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4831–4843, 2018.

    Article  Google Scholar 

  83. S. Shekhar and S. Chawla, A tour of spatial databases. Prentice Hall Upper Saddle River, 2003.

    Google Scholar 

  84. K. Hammoudi, F. Dornaika, B. Soheilian, and N. Paparoditis, “Extracting wire-frame models of street facades from 3d point clouds and the corresponding cadastral map,” IAPRS, vol. 38, no. Part 3A, pp. 91–96, 2010.

    Google Scholar 

  85. P. K. Agarwal, L. Arge, and A. Danner, “From point cloud to grid dem: A scalable approach,” in Progress in Spatial Data Handling. Springer, 2006, pp. 771–788.

    Google Scholar 

  86. Y. Hu, “Geo-text data and data-driven geospatial semantics,” Geography Compass, vol. 12, no. 11, p. e12404, 2018.

    Google Scholar 

  87. M. J. De Smith, M. F. Goodchild, and P. Longley, Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador publishing ltd, 2007.

    Google Scholar 

  88. A. Kamilaris and F. O. Ostermann, “Geospatial analysis and the internet of things,” ISPRS international journal of geo-information, vol. 7, no. 7, p. 269, 2018.

    Google Scholar 

  89. O. Chakraborty, J. Das, A. Dasgupta, P. Mitra, and S. K. Ghosh, “A geospatial service oriented framework for disaster risk zone identification,” in International Conference on Computational Science and Its Applications. Springer, 2016, pp. 44–56.

    Google Scholar 

  90. K. Puri, G. Areendran, K. Raj, S. Mazumdar, and P. Joshi, “Forest fire risk assessment in parts of northeast india using geospatial tools,” Journal of forestry research, vol. 22, no. 4, p. 641, 2011.

    Google Scholar 

  91. M. Sharifikia, “Vulnerability assessment and earthquake risk mapping in part of north iran using geospatial techniques,” Journal of the Indian Society of Remote Sensing, pp. 708–716, 2010.

    Google Scholar 

  92. N. Wood, J. Jones, J. Schelling, and M. Schmidtlein, “Tsunami vertical-evacuation planning in the us pacific northwest as a geospatial, multi-criteria decision problem,” International journal of disaster risk reduction, vol. 9, pp. 68–83, 2014.

    Article  Google Scholar 

  93. E. M. Delmelle, H. Zhu, W. Tang, and I. Casas, “A web-based geospatial toolkit for the monitoring of dengue fever,” Applied Geography, vol. 52, pp. 144–152, 2014.

    Article  Google Scholar 

  94. A. I. J. Tostes, F. de LP Duarte-Figueiredo, R. Assunção, J. Salles, and A. A. Loureiro, “From data to knowledge: city-wide traffic flows analysis and prediction using bing maps,” in Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, 2013, pp. 1–8.

    Google Scholar 

  95. A. Kotsev, S. Schade, M. Craglia, M. Gerboles, L. Spinelle, and M. Signorini, “Next generation air quality platform: Openness and interoperability for the internet of things,” Sensors, vol. 16, no. 3, p. 403, 2016.

    Google Scholar 

  96. A. Kamilaris, A. Assumpcio, A. B. Blasi, M. Torrellas, and F. X. Prenafeta-Boldú, “Estimating the environmental impact of agriculture by means of geospatial and big data analysis: The case of catalonia,” in From Science to Society. Springer, 2018, pp. 39–48.

    Google Scholar 

  97. I. A. Jalil, A. R. A. Rasam, N. A. Adnan, N. M. Saraf, and A. N. Idris, “Geospatial network analysis for healthcare facilities accessibility in semi-urban areas,” in 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA). IEEE, 2018, pp. 255–260.

    Google Scholar 

  98. A. Kamilaris and A. Pitsillides, “A web-based tourist guide mobile application,” in Proceedings of the International Conference on Sustainability, Technology and Education (STE), Kuala Lumpur, Malaysia, vol. 29, 2013.

    Google Scholar 

  99. S. Ghosh, A. Chowdhury, and S. K. Ghosh, “A machine learning approach to find the optimal routes through analysis of gps traces of mobile city traffic,” in Recent Findings in Intelligent Computing Techniques. Springer, 2018, pp. 59–67.

    Google Scholar 

  100. S. Ghosh and S. K. Ghosh, “Thump: Semantic analysis on trajectory traces to explore human movement pattern,” in Proceedings of the 25th International Conference Companion on World Wide Web, 2016, pp. 35–36.

    Google Scholar 

  101. M. Van Setten, S. Pokraev, and J. Koolwaaij, “Context-aware recommendations in the mobile tourist application compass,” in International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. Springer, 2004, pp. 235–244.

    Google Scholar 

  102. J. S. Brownstein, C. C. Freifeld, B. Y. Reis, and K. D. Mandl, “Surveillance sans frontieres: Internet-based emerging infectious disease intelligence and the healthmap project,” PLoS medicine, vol. 5, no. 7, 2008.

    Google Scholar 

  103. O. Chakraborty, A. Das, A. Dasgupta, P. Mitra, S. K. Ghosh, and T. Mazumder, “A multi-objective framework for analysis of road network vulnerability for relief facility location during flood hazards: A case study of relief location analysis in bankura district, india,” Transactions in GIS, vol. 22, no. 5, pp. 1064–1082, 2018.

    Article  Google Scholar 

  104. A. Dasgupta, S. K. Ghosh, and P. Mitra, “A technique for assessing the quality of volunteered geographic information for disaster decision making,” in International Conference on Computational Science and Its Applications. Springer, 2018, pp. 589–597.

    Google Scholar 

  105. S. Pal and S. K. Ghosh, “Rule based end-to-end learning framework for urban growth prediction,” arXiv preprint arXiv:1711.10801, 2017.

    Google Scholar 

  106. V. Miz and V. Hahanov, “Smart traffic light in terms of the cognitive road traffic management system (ctms) based on the internet of things,” in Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014). IEEE, 2014, pp. 1–5.

    Google Scholar 

  107. E. D. Ayele, K. Das, N. Meratnia, and P. J. Havinga, “Leveraging ble and lora in iot network for wildlife monitoring system (wms),” in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE, 2018, pp. 342–348.

    Google Scholar 

  108. N. Cressie, Statistics for spatial data. John Wiley & Sons, 2015.

    MATH  Google Scholar 

  109. S. Bhattacharjee, P. Mitra, and S. K. Ghosh, “Spatial interpolation to predict missing attributes in gis using semantic kriging,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 8, pp. 4771–4780, 2013.

    Article  Google Scholar 

  110. A. C. Clements, H. L. Reid, G. C. Kelly, and S. I. Hay, “Further shrinking the malaria map: how can geospatial science help to achieve malaria elimination?” The Lancet infectious diseases, vol. 13, no. 8, pp. 709–718, 2013.

    Article  Google Scholar 

  111. K. Forsythe, K. Paudel, and C. Marvin, “Geospatial analysis of zinc contamination in lake ontario sediments,” Journal of Environmental Informatics, vol. 16, no. 1, pp. 1–10, 2010.

    Article  Google Scholar 

  112. E.-S. E. Omran, “A proposed model to assess and map irrigation water well suitability using geospatial analysis,” Water, vol. 4, no. 3, pp. 545–567, 2012.

    Article  Google Scholar 

  113. F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao, “Edge-enabled disaster rescue: a case study of searching for missing people,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 6, pp. 1–21, 2019.

    Google Scholar 

  114. X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-enabled real-time traffic management system,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4568–4578, 2018.

    Article  Google Scholar 

  115. S. Ghosh, J. Das, and S. K. Ghosh, “Locator: A cloud-fog-enabled framework for facilitating efficient location based services,” in 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS). IEEE, 2020, pp. 87–92.

    Google Scholar 

  116. A. Mukherjee, S. Ghosh, A. Behere, S. K. Ghosh, and R. Buyya, “Internet of health things (ioht) for personalized health care using integrated edge-fog-cloud network,” Journal of Ambient Intelligence and Humanized Computing, 2020.

    Google Scholar 

  117. S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S. Wander, and R. Buyya, “Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated iot and fog computing environments,” Future Generation Computer Systems, vol. 104, pp. 187–200, 2020.

    Article  Google Scholar 

  118. X. Zhou, C. Xu, and B. Kimmons, “Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform,” Computers, Environment and Urban Systems, vol. 54, pp. 144–153, 2015.

    Article  Google Scholar 

  119. R. R. Vatsavai, B. Ramachandra, Z. Chen, and J. Jernigan, “geoEdge: a real-time analytics framework for geospatial applications,” in Proceedings of the 8th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, 2019, pp. 1–4.

    Google Scholar 

  120. F. W. Nugroho, S. Suryono, and J. E. Suseno, “Fog computing for monitoring of various area mapping pollution carbon monoxide (co) with ordinary kriging method,” in 2019 Fourth International Conference on Informatics and Computing (ICIC). IEEE, 2019, pp. 1–6.

    Google Scholar 

  121. R. K. Barik, R. K. Lenka, N. Simha, H. Dubey, and K. Mankodiya, “Fog computing based sdi framework for mineral resources information infrastructure management in india,” arXiv preprint arXiv:1712.09282, 2017.

    Google Scholar 

  122. X. Cao and S. Madria, “Efficient geospatial data collection in iot networks for mobile edge computing,” in 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). IEEE, 2019, pp. 1–10.

    Google Scholar 

  123. B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constellations as a new class of computer system,” in Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, 2020, pp. 939–954.

    Google Scholar 

  124. R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito, and R. Buyya, “Metropolitan intelligent surveillance systems for urban areas by harnessing iot and edge computing paradigms,” Software: Practice and Experience, vol. 48, no. 8, pp. 1475–1492, 2018.

    Google Scholar 

  125. M. P. Armstrong, S. Wang, and Z. Zhang, “The internet of things and fast data streams: prospects for geospatial data science in emerging information ecosystems,” Cartography and Geographic Information Science, vol. 46, no. 1, pp. 39–56, 2019.

    Article  Google Scholar 

  126. W. Richardson, H. Krishnaswami, R. Vega, and M. Cervantes, “A low cost, edge computing, all-sky imager for cloud tracking and intra-hour irradiance forecasting,” Sustainability, vol. 9, no. 4, p. 482, 2017.

    Google Scholar 

  127. R. K. Barik, H. Dubey, A. B. Samaddar, R. D. Gupta, and P. K. Ray, “FogGIS: Fog computing for geospatial big data analytics,” in 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON). IEEE, 2016, pp. 613–618.

    Google Scholar 

  128. T. Higashino, “Edge computing for cooperative real-time controls using geospatial big data,” in Smart Sensors and Systems. Springer, 2017, pp. 441–466.

    Google Scholar 

  129. S. Liu, X. Chen, B. Qi, and L. Zherr, “Performace oriented edge computing of geospatial information with 3d scenery,” in 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2018, pp. 853–858.

    Google Scholar 

  130. H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

    Google Scholar 

  131. R. Mahmud and R. Buyya, “Modelling and simulation of fog and edge computing environments using ifogsim toolkit,” Fog and edge computing: Principles and paradigms, pp. 1–35, 2019.

    Google Scholar 

  132. S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-based lightweight framework for edge and fog computing,” Journal of Systems and Software, vol. 154, pp. 22–36, 2019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydeep Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, J., Ghosh, S.K., Buyya, R. (2021). Geospatial Edge-Fog Computing: A Systematic Review, Taxonomy, and Future Directions. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics