Skip to main content

IoT Integration with MEC

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

Internet of Things (IoT) as a backbone of future customer value enables ubiquitously available digital services. However, providing smart digital services in an IoT ecosystem that billions of devices are connected to the network, needs high processing power and high capacity as well as low latency communications. In this regard, the emergence of MultiAccess Edge Computing (MEC) technology offers cloud computing capabilities to the network edge to meet IoT-based application requirements by providing real-time, high-bandwidth, low-latency access to the network resources. In this chapter, the most important topics related to IoT integrated with MEC have been presented. After introduction, the role of MEC in providing IoT services by using real-time analysis, caching and computing mechanisms are explained. By considering the importance of the integration in service delivery and platform in the next-generation networks (e.g. 5G), the MEC API section is presented. It discusses about the interaction of devices, third-parties and service providers with MEC platform through API as a common language. Then, the mobility management in IoT ecosystem related to service delivery and QoS using MEC has been studied. Finally, after presenting a benchmark for deployed IoT use cases by famous operators, challenges and future direction have been surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kafle VP, Fukushima Y, Harai H (2016) Internet of things standardization in ITU and prospective networking technologies. IEEE Communications Magazine 54 (9):43–49

    Article  Google Scholar 

  2. Čolaković A, Hadžialić M (2018) Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks 144:17–39

    Article  Google Scholar 

  3. Popovski P, Trillingsgaard KF, Simeone O, Durisi G (2018) 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. Ieee Access 6:55765–55779

    Article  Google Scholar 

  4. Qiao X, Ren P, Dustdar S, Chen J (2018) A new era for web AR with mobile edge computing. IEEE Internet Computing 22 (4):46–55

    Article  Google Scholar 

  5. Tun YK, Alsenwi M, Tran NH, Han Z, Hong CS (2020) Energy Efficient Communication and Computation Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond. IEEE Access 8:136024–136035

    Article  Google Scholar 

  6. Tang J, Shim B, Quek TQ (2019) Service multiplexing and revenue maximization in sliced C-RAN incorporated with URLLC and multicast eMBB. IEEE Journal on Selected Areas in Communications 37 (4):881–895

    Article  Google Scholar 

  7. Wang K, Ji W, Li J, Wang H, Cao T Wireless Content Caching in Sliced Cellular Networks with Multicast Beamforming. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), 2019. IEEE, pp 1–6

    Google Scholar 

  8. Chen W-E, Fan X-Y, Chen L-X A CNN-based Packet Classification of eMBB, mMTC and URLLC Applications for 5G. In: 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). IEEE, pp 140–145

    Google Scholar 

  9. Comşa I-S, Muntean G-M, Trestian R (2020) An Innovative Machine-Learning-Based Scheduling Solution for Improving Live UHD Video Streaming Quality in Highly Dynamic Network Environments. IEEE Transactions on Broadcasting

    Google Scholar 

  10. Gomez-Barquero D, Li W, Fuentes M, Xiong J, Araniti G, Akamine C, Wang J (2019) IEEE Transactions on Broadcasting special issue on: 5G for broadband multimedia systems and broadcasting. IEEE Transactions on Broadcasting 65 (2):351–355

    Article  Google Scholar 

  11. Cheng J, Chen W, Tao F, Lin C-L (2018) Industrial IoT in 5G environment towards smart manufacturing. Journal of Industrial Information Integration 10:10–19

    Article  Google Scholar 

  12. Khoshnevisan M, Joseph V, Gupta P, Meshkati F, Prakash R, Tinnakornsrisuphap P (2019) 5G industrial networks with CoMP for URLLC and time sensitive network architecture. IEEE Journal on Selected Areas in Communications 37 (4):947–959

    Article  Google Scholar 

  13. Fitzgerald E, Pióro M Efficient pilot allocation for urllc traffic in 5g industrial iot networks. In: 2019 11th International Workshop on Resilient Networks Design and Modeling (RNDM), 2019. IEEE, pp 1–7

    Google Scholar 

  14. Gupta R, Tanwar S, Tyagi S, Kumar N (2019) Tactile-internet-based telesurgery system for healthcare 4.0: An architecture, research challenges, and future directions. IEEE Network 33 (6):22–29

    Article  Google Scholar 

  15. Alliance N (2019) Verticals URLLC Use Cases and Requirements. NGMN Alliance

    Google Scholar 

  16. Vergutz A, Noubir G, Nogueira M (2020) Reliability for Smart Healthcare: A Network Slicing Perspective. IEEE Network 34 (4):91–97

    Article  Google Scholar 

  17. Feng L, Li W, Lin Y, Zhu L, Guo S, Zhen Z (2020) Joint Computation Offloading and URLLC Resource Allocation for Collaborative MEC Assisted Cellular-V2X Networks. IEEE Access 8:24914–24926

    Article  Google Scholar 

  18. van Dam J-F, Bißmeyer N, Zimmermann C, Eckert K (2019) Security in hybrid vehicular communication based on its g5, lte-v, and mobile edge computing. In: Fahrerassistenzsysteme 2018. Springer, pp 80–91

    Google Scholar 

  19. Hochstetler J, Padidela R, Chen Q, Yang Q, Fu S Embedded deep learning for vehicular edge computing. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018. IEEE, pp 341–343

    Google Scholar 

  20. Zhao J, Wang L, Wong K-K, Tao M, Mahmoodi T (2018) Energy and latency control for edge computing in dense V2X networks. arXiv preprint arXiv:180702311

    Google Scholar 

  21. Liu Y, Ling J, Shou G, Seah HS, Hu Y Augmented reality based on the integration of mobile edge computing and fiber-wireless access networks. In: International Workshop on Advanced Image Technology (IWAIT) 2019, 2019. International Society for Optics and Photonics, p 110490M

    Google Scholar 

  22. Draxinger W, Miura Y, Grill C, Pfeiffer T, Huber R A real-time video-rate 4D MHz-OCT microscope with high definition and low latency virtual reality display. In: European Conference on Biomedical Optics, 2019. Optical Society of America, p 11078_11071

    Google Scholar 

  23. Chakareski J, Gupta S Multi-Connectivity and Edge Computing for Ultra-Low-Latency Lifelike Virtual Reality. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), 2020. IEEE, pp 1–6

    Google Scholar 

  24. Varga P, Peto J, Franko A, Balla D, Haja D, Janky F, Soos G, Ficzere D, Maliosz M, Toka L (2020) 5g support for industrial iot applications–challenges, solutions, and research gaps. Sensors 20 (3):828

    Article  Google Scholar 

  25. Horsmanheimo S, Säe J, Jokela T, Tuomimäki L, Nigussie E, Hjelt A, Huilla S, Dönmez T, Le Bail N, Valkama M Remote Monitoring of IoT Sensors and Communication Link Quality in Multisite mMTC Testbed. In: 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2019. IEEE, pp 1–7

    Google Scholar 

  26. Ananth S, Sathya P, Mohan PM Smart Health Monitoring System through IOT. In: 2019 International Conference on Communication and Signal Processing (ICCSP), 2019. IEEE, pp 0968–0970

    Google Scholar 

  27. De Michele R, Furini M Iot healthcare: Benefits, issues and challenges. In: Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, 2019. pp 160–164

    Google Scholar 

  28. Alam MM, Malik H, Khan MI, Pardy T, Kuusik A, Le Moullec Y (2018) A survey on the roles of communication technologies in IoT-based personalized healthcare applications. IEEE Access 6:36611–36631

    Article  Google Scholar 

  29. Ahmed S, Rahman MS, Rahaman MS A blockchain-based architecture for integrated smart parking systems. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2019. IEEE, pp 177–182

    Google Scholar 

  30. Sicari S, Rizzardi A, Coen-Porisini A (2019) Smart transport and logistics: A Node-RED implementation. Internet Technology Letters 2 (2):e88

    Article  Google Scholar 

  31. Gill SS, Garraghan P, Buyya R (2019) ROUTER: Fog enabled cloud based intelligent resource management approach for smart home IoT devices. Journal of Systems and Software 154:125–138

    Article  Google Scholar 

  32. Yassine A, Singh S, Hossain MS, Muhammad G (2019) IoT big data analytics for smart homes with fog and cloud computing. Future Generation Computer Systems 91:563–573

    Article  Google Scholar 

  33. Liu Y, Yang C, Jiang L, Xie S, Zhang Y (2019) Intelligent edge computing for IoT-based energy management in smart cities. IEEE Network 33 (2):111–117

    Article  Google Scholar 

  34. Mochamad Rifki Ulil A, Sukaridhoto S, Tjahjono A, Kurnia Basuki D (2019) The vehicle as a mobile sensor network base iot and big data for pothole detection caused by flood disaster. E&ES 239 (1):012034

    Google Scholar 

  35. Rahman MA, Rashid MM, Hossain MS, Hassanain E, Alhamid MF, Guizani M (2019) Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart city. IEEE Access 7:18611–18621

    Article  Google Scholar 

  36. Fan D, Gao S The application of mobile edge computing in agricultural water monitoring system. In: IOP Conference Series: Earth and Environmental Science, 2018. vol 1. IOP Publishing, p 012015

    Google Scholar 

  37. Trilles S, Torres-Sospedra J, Belmonte Ó, Zarazaga-Soria FJ, González-Pérez A, Huerta J (2019) Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease. Sustainable Computing: Informatics and Systems

    Google Scholar 

  38. Miles B, Bourennane E-B, Boucherkha S, Chikhi S (2020) A study of LoRaWAN protocol performance for IoT applications in smart agriculture. Computer Communications

    Google Scholar 

  39. Awan SH, Ahmed S, Nawaz A, Sulaiman S, Zaman K, Ali M, Najam Z, Imran S (2020) BlockChain with IoT, an emergent routing scheme for smart agriculture. Int J Adv Comput Sci Appl 11:420–429

    Google Scholar 

  40. Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W (2017) A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal 4 (5):1125–1142

    Article  Google Scholar 

  41. Shahhoseini H, Naderi M, Buyya R Shared memory multistage clustering structure, an efficient structure for massively parallel processing systems. In: Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, 2000. IEEE, pp 22–27

    Google Scholar 

  42. Saeed M, Shahhoseini HS APPMA-An anti-phishing protocol with mutual authentication. In: The IEEE symposium on Computers and Communications, 2010. IEEE, pp 308–313

    Google Scholar 

  43. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—A key technology towards 5G. ETSI white paper 11 (11):1–16

    Google Scholar 

  44. Roman R, Lopez J, Mambo M (2018) Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems 78:680–698

    Article  Google Scholar 

  45. GSMA (October 2020) 5G IoT Private & Dedicated Networks for Industry 4.0.

    Google Scholar 

  46. Zanzi L, Cirillo F, Sciancalepore V, Giust F, Costa-Perez X, Mangiante S, Klas G (2019) Evolving Multi-Access Edge Computing to Support Enhanced IoT Deployments. IEEE Communications Standards Magazine 3 (2):26–34

    Article  Google Scholar 

  47. Rahimi H, Zibaeenejad A, Safavi AA A novel IoT architecture based on 5G-IoT and next generation technologies. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018. IEEE, pp 81–88

    Google Scholar 

  48. Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO (2020) Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges. IEEE Communications Surveys & Tutorials

    Google Scholar 

  49. Shah VS (2018) Multi-agent cognitive architecture-enabled IoT applications of mobile edge computing. Annals of Telecommunications 73 (7–8):487–497

    Article  Google Scholar 

  50. Balasubramanian V, Kouvelas N, Chandra K, Prasad RV, Voyiatzis AG, Liu W A unified architecture for integrating energy harvesting IoT devices with the mobile edge cloud. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 2018. IEEE, pp 13–18

    Google Scholar 

  51. Deng S, Xiang Z, Yin J, Taheri J, Zomaya AY (2018) Composition-driven IoT service provisioning in distributed edges. IEEE Access 6:54258–54269

    Article  Google Scholar 

  52. Redondi AE, Arcia-Moret A, Manzoni P Towards a scaled IoT pub/sub architecture for 5G networks: The case of multiaccess edge computing. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019. IEEE, pp 436–441

    Google Scholar 

  53. Marjanović M, Antonić A, Žarko IP (2018) Edge computing architecture for mobile crowdsensing. IEEE Access 6:10662–10674

    Article  Google Scholar 

  54. Ejaz M, Kumar T, Ylianttila M, Harjula E Performance and Efficiency Optimization of Multi-layer IoT Edge Architecture. In: 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020. IEEE, pp 1–5

    Google Scholar 

  55. Porambage P, Okwuibe J, Liyanage M, Ylianttila M, Taleb T (2018) Survey on multi-access edge computing for internet of things realization. IEEE Communications Surveys & Tutorials 20 (4):2961–2991

    Article  Google Scholar 

  56. Guardo EL (2018) Edge Computing: challenges, solutions and architectures arising from the integration of Cloud Computing with Internet of Things.

    Google Scholar 

  57. Ksentini A, Frangoudis PA (2020) On extending ETSI MEC to support LoRa for efficient IoT application deployment at the edge. IEEE Communications Standards Magazine 4 (2):57–63

    Article  Google Scholar 

  58. Trakadas P, Nomikos N, Michailidis ET, Zahariadis T, Facca FM, Breitgand D, Rizou S, Masip X, Gkonis P (2019) Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture. Sensors 19 (16):3591

    Article  Google Scholar 

  59. Khan UY, Soomro TR Applications of IoT: Mobile Edge Computing Perspectives. In: 2018 12th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), 2018. IEEE, pp 1–7

    Google Scholar 

  60. Liu Y, Peng M, Shou G, Chen Y, Chen S (2020) Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of Things. IEEE Internet of Things Journal 7 (8):6722–6747

    Article  Google Scholar 

  61. Sekaran R, Patan R, Raveendran A, Al-Turjman F, Ramachandran M, Mostarda L (2020) Survival Study on Blockchain Based 6G-Enabled Mobile Edge Computation for IoT Automation. IEEE Access 8:143453–143463

    Article  Google Scholar 

  62. Zhu R, Liu L, Song H, Ma M (2020) Multi-access edge computing enabled internet of things: advances and novel applications. Springer,

    Google Scholar 

  63. Husain S, Kunz A, Prasad A, Samdanis K, Song J Mobile edge computing with network resource slicing for Internet-of-Things. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 2018. IEEE, pp 1–6

    Google Scholar 

  64. Dighriri M, Otebolaku A, Alfoudi A, Lee GM (2020) Slice Allocation Management Model in 5G Networks for IoT Services with Reliable Low Latency.

    Google Scholar 

  65. Pham T-M (2020) Optimization of Resource Management for NFV-Enabled IoT Systems in Edge Cloud Computing. IEEE Access 8:178217–178229

    Article  Google Scholar 

  66. Zhou Z, Yu S, Chen W, Chen X (2020) CE-IoT: Cost-Effective Cloud-Edge Resource Provisioning for Heterogeneous IoT Applications. IEEE Internet of Things Journal

    Google Scholar 

  67. Xiong X, Zheng K, Lei L, Hou L (2020) Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing. IEEE Journal on Selected Areas in Communications 38 (6):1133–1146

    Article  Google Scholar 

  68. Zhang Y, Liu J-H, Wang C-Y, Wei H-Y (2020) Decomposable Intelligence on Cloud-Edge IoT Framework for Live Video Analytics. IEEE Internet of Things Journal

    Book  Google Scholar 

  69. Lei L, Xu H, Xiong X, Zheng K, Xiang W (2019) Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge computing system. IEEE Internet of Things Journal 6 (3):5345–5362

    Article  Google Scholar 

  70. Huang J, Li S, Chen Y (2020) Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing. Peer-to-Peer Networking and Applications:1–12

    Google Scholar 

  71. Lee J, Kim DJ, Niyato D (2020) Market Analysis of Distributed Learning Resource Management for Internet of Things: A Game Theoretic Approach. IEEE Internet of Things Journal

    Google Scholar 

  72. Qian LP, Feng A, Huang Y, Wu Y, Ji B, Shi Z (2018) Optimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networks. IEEE Internet of Things Journal 6 (2):2806–2816

    Article  Google Scholar 

  73. Du Y, Wang K, Yang K, Zhang G Energy-efficient resource allocation in UAV based MEC system for IoT devices. In: 2018 IEEE Global Communications Conference (GLOBECOM), 2018. IEEE, pp 1–6

    Google Scholar 

  74. Liu B, Liu C, Peng M (2020) Resource Allocation for Energy-Efficient MEC in NOMA-Enabled Massive IoT Networks. IEEE Journal on Selected Areas in Communications

    Google Scholar 

  75. Zarca AM, Bernabe JB, Trapero R, Rivera D, Villalobos J, Skarmeta A, Bianchi S, Zafeiropoulos A, Gouvas P (2019) Security management architecture for NFV/SDN-aware IoT systems. IEEE Internet of Things Journal 6 (5):8005–8020

    Article  Google Scholar 

  76. Almajali S, Salameh HB, Ayyash M, Elgala H A framework for efficient and secured mobility of IoT devices in mobile edge computing. In: 2018 third international conference on fog and mobile edge computing (FMEC), 2018. IEEE, pp 58–62

    Google Scholar 

  77. Li C-Y, Lin Y-D, Lai Y-C, Chien H-T, Huang Y-S, Huang P-H, Liu H-Y (2020) Transparent AAA Security Design for Low-Latency MEC-Integrated Cellular Networks. IEEE Transactions on Vehicular Technology 69 (3):3231–3243

    Article  Google Scholar 

  78. Ding AY (2019) MEC and Cloud Security. Wiley 5G Ref: The Essential 5G Reference Online:1–16

    Google Scholar 

  79. Durresi M, Subashi A, Durresi A, Barolli L, Uchida K (2019) Secure communication architecture for internet of things using smartphones and multi-access edge computing in environment monitoring. Journal of Ambient Intelligence and Humanized Computing 10 (4):1631–1640

    Article  Google Scholar 

  80. He D, Chan S, Guizani M (2018) Security in the Internet of Things supported by mobile edge computing. IEEE Communications Magazine 56 (8):56–61

    Article  Google Scholar 

  81. Ranaweera P, Jurcut AD, Liyanage M Realizing multi-access edge computing feasibility: Security perspective. In: 2019 IEEE Conference on Standards for Communications and Networking (CSCN), 2019. IEEE, pp 1–7

    Google Scholar 

  82. Ni J, Lin X, Shen XS (2019) Toward edge-assisted Internet of Things: From security and efficiency perspectives. IEEE Network 33 (2):50–57

    Article  Google Scholar 

  83. Hewa T, Braeken A, Ylianttila M, Liyanage M Multi-Access Edge Computing and Blockchain-based Secure Telehealth System Connected with 5G and IoT.

    Google Scholar 

  84. Du M, Wang K, Chen Y, Wang X, Sun Y (2018) Big data privacy preserving in multi-access edge computing for heterogeneous Internet of Things. IEEE Communications Magazine 56 (8):62–67

    Article  Google Scholar 

  85. Li X, Liu S, Wu F, Kumari S, Rodrigues JJ (2018) Privacy preserving data aggregation scheme for mobile edge computing assisted IoT applications. IEEE Internet of Things Journal 6 (3):4755–4763

    Article  Google Scholar 

  86. He X, Jin R, Dai H (2018) Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT. IEEE Internet of Things Journal 6 (3):4547–4555

    Article  Google Scholar 

  87. Tan X, Li H, Wang L, Xu Z Global Orchestration of Cooperative Defense against DDoS Attacks for MEC. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), 2019. IEEE, pp 1–6

    Google Scholar 

  88. Ge S, Lu B, Xiao L, Gong J, Chen X, Liu Y (2020) Mobile Edge Computing Against Smart Attacks with Deep Reinforcement Learning in Cognitive MIMO IoT Systems. Mobile Networks and Applications 25 (5):1851–1862

    Article  Google Scholar 

  89. Singh J, Bello Y, Refaey A, Erbad A, Mohamed A (2020) Hierarchical Security Paradigm for IoT Multi-access Edge Computing. IEEE Internet of Things Journal

    Google Scholar 

  90. Krishnan P, Duttagupta S, Achuthan K (2019) SDNFV Based Threat Monitoring and Security Framework for Multi-Access Edge Computing Infrastructure. Mobile Networks and Applications 24 (6):1896–1923

    Article  Google Scholar 

  91. ALshukri D, Sumesh E, Krishnan P Intelligent Border Security Intrusion Detection using IoT and Embedded systems. In: 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), 2019. IEEE, pp 1–3

    Google Scholar 

  92. Huang M, Liu W, Wang T, Liu A, Zhang S (2019) A cloud-MEC collaborative task offloading scheme with service orchestration. IEEE Internet of Things Journal

    Google Scholar 

  93. Wu Y (2020) Cloud-Edge Orchestration for the Internet-of-Things: Architecture and AI-Powered Data Processing. IEEE Internet of Things Journal

    Google Scholar 

  94. He W, Guo S, Liang Y, Qiu X (2019) Markov approximation method for optimal service orchestration in IoT network. IEEE Access 7:49538–49548

    Article  Google Scholar 

  95. Muñoz R, Vilalta R, Casellas R, Martínez R, Yoshikane N, Tsuritani T, Morita I Orchestration of Optical Networks and Cloud/Edge Computing for IoT Services. In: 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019. IEEE, pp 1–3

    Google Scholar 

  96. Nguyen T-D, Huh E-N, Jo M (2018) Decentralized and revised content-centric networking-based service deployment and discovery platform in mobile edge computing for IoT devices. IEEE Internet of Things Journal 6 (3):4162–4175

    Article  Google Scholar 

  97. Alameddine HA, Sharafeddine S, Sebbah S, Ayoubi S, Assi C (2019) Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing. IEEE Journal on Selected Areas in Communications 37 (3):668–682

    Article  Google Scholar 

  98. Liu J, Zhang Q (2020) Using Imperfect Transmission in MEC Offloading to Improve Service Reliability of Time-Critical Computer Vision Applications. Ieee Access 8:107364–107372

    Article  Google Scholar 

  99. Zahed MIA, Ahmad I, Habibi D, Phung QV (2020) Green and Secure Computation Offloading for Cache-Enabled IoT Networks. IEEE Access 8:63840–63855

    Article  Google Scholar 

  100. Chen M, Wang L, Chen J, Wei X, Lei L (2019) A computing and content delivery network in the smart city: Scenario, framework, and analysis. IEEE Network 33 (2):89–95

    Article  Google Scholar 

  101. Yuan Q, Zhou H, Li J, Liu Z, Yang F, Shen XS (2018) Toward efficient content delivery for automated driving services: An edge computing solution. IEEE Network 32 (1):80–86

    Article  Google Scholar 

  102. Prerna D, Tekchandani R, Kumar N, Tanwar S (2020) An Energy-Efficient Cache Localization Technique for D2D Communication in IoT Environment. IEEE Internet of Things Journal

    Google Scholar 

  103. Almajali S, Dhiah el Diehn I, Salameh HB, Ayyash M, Elgala H (2019) A distributed multi-layer MEC-cloud architecture for processing large scale IoT-based multimedia applications. Multimedia Tools and Applications 78 (17):24617–24638

    Article  Google Scholar 

  104. Elgendy IA, Zhang W-Z, Zeng Y, He H, Tian Y-C, Yang Y (2020) Efficient and Secure Multi-User Multi-Task Computation Offloading for Mobile-Edge Computing in Mobile IoT Networks. IEEE Transactions on Network and Service Management

    Google Scholar 

  105. Papathanail G, Fotoglou I, Demertzis C, Pentelas A, Sgouromitis K, Papadimitriou P, Spatharakis D, Dimolitsas I, Dechouniotis D, Papavassiliou S COSMOS: An Orchestration Framework for Smart Computation Offloading in Edge Clouds. In: NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, 2020. IEEE, pp 1–6

    Google Scholar 

  106. Min M, Xiao L, Chen Y, Cheng P, Wu D, Zhuang W (2019) Learning-based computation offloading for IoT devices with energy harvesting. IEEE Transactions on Vehicular Technology 68 (2):1930–1941

    Article  Google Scholar 

  107. Hsu C-W, Hsu Y-L, Wei H-Y Energy-Efficient and Reliable MEC Offloading for Heterogeneous Industrial IoT Networks. In: 2019 European Conference on Networks and Communications (EuCNC), 2019. IEEE, pp 384–388

    Google Scholar 

  108. Wang D, Tian X, Cui H, Liu Z (2020) Reinforcement learning-based joint task offloading and migration schemes optimization in mobility-aware MEC network. China Communications 17 (8):31–44

    Article  Google Scholar 

  109. Shah SDA, Gregory MA, Li S, Fontes RDR (2020) SDN Enhanced Multi-Access Edge Computing (MEC) for E2E Mobility and QoS Management. IEEE Access 8:77459–77469

    Article  Google Scholar 

  110. Dhanvijay MM, Patil SC (2020) Optimized mobility management protocol for the IoT based WBAN with an enhanced security. Wireless Networks:1–19

    Google Scholar 

  111. Aljeri N, Boukerche A (2020) Mobility Management in 5G-enabled Vehicular Networks: Models, Protocols, and Classification. ACM Computing Surveys (CSUR) 53 (5):1–35

    Article  Google Scholar 

  112. Leppanen T, Savaglio C, Lovén L, Jarvenpaa T, Ehsani R, Peltonen E, Fortino G, Riekki J Edge-based Microservices Architecture for Internet of Things: Mobility Analysis Case Study. In: 2019 IEEE Global Communications Conference (GLOBECOM), 2019. IEEE, pp 1–7

    Google Scholar 

  113. Pantović V Enabling Technology in Three Primary 5G Services. In: Sinteza 2019-International Scientific Conference on Information Technology and Data Related Research, 2019. Singidunum University, pp 301–306

    Google Scholar 

  114. Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A (2014) Mobile-edge computing introductory technical white paper. White paper, mobile-edge computing (MEC) industry initiative:1089–7801

    Google Scholar 

  115. Tran TX, Hajisami A, Pandey P, Pompili D (2017) Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications Magazine 55 (4):54–61

    Article  Google Scholar 

  116. Pham Q-V, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang W-J, Ding Z (2020) A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access 8:116974–117017

    Article  Google Scholar 

  117. Ai Y, Peng M, Zhang K (2018) Edge computing technologies for Internet of Things: a primer. Digital Communications and Networks 4 (2):77–86

    Article  Google Scholar 

  118. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials 19 (4):2322–2358

    Article  Google Scholar 

  119. Zhang K, Mao Y, Leng S, Zhao Q, Li L, Peng X, Pan L, Maharjan S, Zhang Y (2016) Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE access 4:5896–5907

    Article  Google Scholar 

  120. Ding Z, Xu J, Dobre OA, Poor HV (2019) Joint power and time allocation for NOMA–MEC offloading. IEEE Transactions on Vehicular Technology 68 (6):6207–6211

    Article  Google Scholar 

  121. Beck MT, Feld S, Fichtner A, Linnhoff-Popien C, Schimper T ME-VoLTE: Network functions for energy-efficient video transcoding at the mobile edge. In: 2015 18th International Conference on Intelligence in Next Generation Networks, 2015. IEEE, pp 38–44

    Google Scholar 

  122. Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials 19 (3):1628–1656

    Article  Google Scholar 

  123. Sarrigiannis I, Ramantas K, Kartsakli E, Mekikis P-V, Antonopoulos A, Verikoukis C (2019) Online VNF Lifecycle Management in an MEC-Enabled 5G IoT Architecture. IEEE Internet of Things Journal 7 (5):4183–4194

    Article  Google Scholar 

  124. Toosi AN, Mahmud R, Chi Q, Buyya R (2019) Management and Orchestration of Network Slices in 5G, Fog, Edge and Clouds. Fog and Edge Computing 10

    Google Scholar 

  125. Lin L, Liao X, Jin H, Li P (2019) Computation offloading toward edge computing. Proceedings of the IEEE 107 (8):1584–1607

    Article  Google Scholar 

  126. Yang F, Gupta N, Gerner N, Qi X, Demers A, Gehrke J, Shanmugasundaram J A unified platform for data driven web applications with automatic client-server partitioning. In: Proceedings of the 16th international conference on World Wide Web, 2007. pp 341–350

    Google Scholar 

  127. Wu H, Knottenbelt WJ, Wolter K (2019) An efficient application partitioning algorithm in mobile environments. IEEE Transactions on Parallel and Distributed Systems 30 (7):1464–1480

    Article  Google Scholar 

  128. Mohtavipour SM, Shahhoseini HS A Low-Cost Distributed Mapping for Large-Scale Applications of Reconfigurable Computing Systems. In: 2020 25th International Computer Conference, Computer Society of Iran (CSICC), 2020. IEEE, pp 1–6

    Google Scholar 

  129. Aali SN, Shahhosseini HS, Bagherzadeh N Divisible load scheduling of image processing applications on the heterogeneous star network using a new genetic algorithm. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), 2018. IEEE, pp 77–84

    Google Scholar 

  130. Liu J, Zhang Q (2019) Code-partitioning offloading schemes in mobile edge computing for augmented reality. IEEE Access 7:11222–11236

    Article  Google Scholar 

  131. Tu Y, Ruan Y, Wang S, Wagle S, Brinton CG, Joe-Wang C (2020) Network-Aware Optimization of Distributed Learning for Fog Computing. arXiv preprint arXiv:200408488

    Google Scholar 

  132. Taheribakhsh M, Jafari A, Peiro MM, Kazemifard N 5G Implementation: Major Issues and Challenges. In: 2020 25th International Computer Conference, Computer Society of Iran (CSICC), 2020. IEEE, pp 1–5

    Google Scholar 

  133. ETSI G 004, Mobile Edge Computing (MEC) Service Scenarios V1. 1.1,(2015).

    Google Scholar 

  134. Reznik A, Arora R, Cannon M, Cominardi L, Featherstone W, Frazao R, Giust F, Kekki S, Li A, Sabella D (2017) Developing software for multi-access edge computing. ETSI White Paper 20

    Google Scholar 

  135. Datta SK, Bonnet C MEC and IoT Based Automatic Agent Reconfiguration in Industry 4.0. In: 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 2018. IEEE, pp 1–5

    Google Scholar 

  136. Nokia I (2013) Increasing Mobile Operators Value Proposition With Edge Computing. Technical Brief

    Google Scholar 

  137. Gazis V, Leonardi A, Mathioudakis K, Sasloglou K, Kikiras P, Sudhaakar R Components of fog computing in an industrial internet of things context. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking-Workshops (SECON Workshops), 2015. IEEE, pp 1–6

    Google Scholar 

  138. Vallati C, Virdis A, Mingozzi E, Stea G Exploiting LTE D2D communications in M2M Fog platforms: Deployment and practical issues. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015. IEEE, pp 585–590

    Google Scholar 

  139. Mobile C (2020) 5G MEC-Based Cloud Game Innovation Practice

    Google Scholar 

  140. AT&T AT&T Multi-Access Edge Computing https://www.business.att.com/products/multi-access-edge-computing.html.

  141. Dongkee L, SK Telecom, et al. (2019) Case Study of Scaled-Up SKT* 5G MEC Reference Architecture.

    Google Scholar 

  142. Deutsche Telekom Completes World’s First Public Mobile Edge Network. (2019).

    Google Scholar 

  143. Kaloxylos A, Gavras, Anastasius, & De Peppe, Raffaele (2020) Empowering Vertical Industries through 5G Networks - Current Status and Future Trends. Zenodo,

    Google Scholar 

  144. Shahhoseini HS, Jafari AH, Afhamisisi K (2015) An MDP Approach for Defending Against Fraud Attack in Cognitive Radio Networks. IETE Journal of Research 61 (5):492–499

    Article  Google Scholar 

  145. Saeed M, Shahhoseini HS, Mackvandi A An improved two-party Password Authenticated Key Exchange protocol without server’s public key. In: 2011 IEEE 3rd International Conference on Communication Software and Networks, 2011. IEEE, pp 90–95

    Google Scholar 

  146. Naderi H, Shahhoseini H, Jafari A Availability-Based Routing Algorithm Using AHP Method in IP/MPLS Networks. In: 2012 International Conference on Computer Science and Service System, 2012. IEEE, pp 605–609

    Google Scholar 

  147. Monge AS, Szarkowicz KG (2015) MPLS in the SDN Era: Interoperable Scenarios to Make Networks Scale to New Services. “ O’Reilly Media, Inc.”,

    Google Scholar 

  148. SHAHHOSEİNİ HS, JAFARİ AH (2015) Reputation Based Cooperation Between Network Operators in the Heterogeneous Wireless Environments. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Fen Bilimleri Dergisi 36 (3):1326–1331

    Google Scholar 

  149. Mohammadkhani S, Pozveh AHJ, Karagiannidis GK (2020) Robust Tomlinson-Harashima Precoding for Two-Way Relaying. Wireless Personal Communications:1–13

    Google Scholar 

  150. Zamzam M, Elshabrawy T, Ashour M Resource Management using Machine Learning in Mobile Edge Computing: A Survey. In: 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), 2019. IEEE, pp 112–117

    Google Scholar 

  151. Jafari AH, Shahhoseini HS (2015) A Reinforcement Routing Algorithm with Access Selection in the Multi–Hop Multi–Interface Networks. Journal of Electrical Engineering 66 (2):70–78

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ahmad Mosayyebi and Shakiba Shahbandegan for their careful reading and editing the text of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AmirHossein Jafari Pozveh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pozveh, A.J., Shahhoseini, H.S. (2021). IoT Integration with MEC. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics