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Abstract. Data-driven approaches are becoming dominant in almost every single 
software engineering activity, and requirements engineering is not the exception. 
The analysis of data coming from several sources may indeed become an ex-
tremely useful input to requirements elicitation and management. However, ben-
efits do not come for free. Techniques such as natural language processing and 
machine learning are difficult to master and require high-quality data and specific 
competences from different fields, whilst their generalization remains as a chal-
lenge. This paper introduces the main concepts behind data-driven requirements 
engineering, provides an overview of the state of the art in the field and identifies 
the main challenges to be addressed. 
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1 Introduction 

Identifying, documenting and managing requirements has been part of engineering 
tasks from old times. In the realm of software systems, requirements engineering (RE) 
[1] as a discipline originated more than 40 years ago [2]. The importance of managing 
requirements properly became evident very soon. Several studies quantified the cost of 
fixing errors to be about 10-100 times greater in later phases of software development 
and maintenance than in the requirements phase [3][4]. This observation motivated the 
fast emergence of research related to requirements and the consolidation of RE as a 
well-established software engineering area on its own.  

In recent years, we still find evidence that RE plays a central role in software project 
success. Requirements understanding and “-ilities” (non-functional requirements) are 
reported to be the most influential factors on cost1 and in the particular case of non-
functional requirements, failure to satisfy them can be catastrophic (resulting in a sys-
tem worse than useless) [5]. Industry reports go along the same direction. For instance, 
the Project Management Institute (PMI) reported that inaccurate requirements 

1 Quote from Ricardo Valerdi (U. Arizona & SpaceX) slides in seminar “Cost Estimation in 
Systems Engineering” given at UPC-BarcelonaTech, Sept. 2017. 
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management is the primary cause of unsuccessful projects (i.e., not meeting their orig-
inal goals and business objectives) almost half of the times (47%) [6]. 

Given that requirements are aimed to express needs of all system’s stakeholders, the 
question that arises is: how to ensure that a system is delivering the right value to its 
stakeholders? Among the several directions of research addressing this question, data-
driven RE is a prominent, emerging strand of research. Data-driven RE adopts a differ-
ent perspective than traditional RE methods, shifting the focus from the interaction with 
the stakeholders at system design time, to the exploitation of runtime data. 

2 An Overall View of Data-Driven Requirements Engineering 

The term data-driven requirements engineering (DDRE) was proposed to the commu-
nity in a seminal paper by Maalej et al. published in 2016 [7], in which they defined 
DDRE as “RE by the masses and for the masses”. The main motivation for DDRE is to 
take profit of the existence of large amounts of data in the form of feedback to guide 
requirement engineers in their decisions about what requirements to include in subse-
quent system releases. While the concept of feedback is very generic and exists from 
long ago [8][9] (e.g., in the form of issues stored in an issue tracker in open source 
projects), it has been with the emergence of applications for mobile devices (apps) that 
feedback has gained momentum. Apps’ users can easily comment and provide their 
opinions through adequate feedback gathering mechanisms in app stores [10] while 
gathering data about system usage is also commonplace today.   

DDRE conveys the need of a continuous cycle to make actionable the gathered data. 
This is illustrated in Fig. 1, which adapts the cycle proposed in the Q-Rapids project 
[11][12]. At the topmost left part of the figure we find the set of requirements for the 
software system, which can be stored in a product backlog or some other format (even 
a word file). Requirements are prioritized in a way that a software development team 
implements a subset of them in the next release (possibly after refining them into con-
crete development tasks). Again, this can be done in different ways depending on the 
software development process, ranging from a traditional process to an agile one, even 
in the extreme a continuous software development process [13] where the concept of 
release gets diluted and instead, requirements are continuously selected and imple-
mented.  

Once the (latest release of the) software system is deployed, users will use it for their 
own purposes. While they use it, some data can be collected in a transparent manner, 
through usage logs, system monitors and similar instruments. These data are known as 
implicit feedback, since their gathering does not require the explicit intervention of the 
user. Besides, the user can provide explicit feedback provided that some communica-
tion channels are available. Explicit feedback will be often textual, although other mo-
dalities exist. 

Feedback can be seen as a stream of data with potential to deliver insights that ideally 
can be made actionable. Therefore, the DDRE cycle inherently includes an activity for 
data analysis. The capabilities provided by this activity are a key point in every DDRE 
approach. Typically, this activity will clean, combine and analyse the feedback in order 
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to compute values for factors or indicators, uncover patterns of behaviour, raise alerts, 
etc. In the ideal case, these consolidated data are rendered through a software analytics 
tool. Beyond advanced visualization techniques, this type of tool offers diverse capa-
bilities to support requirement engineers in deciding upon new or modified (even re-
moved) requirements, which are eventually implemented, generating new data for the 
next iteration in the cycle.  

In the following sections, we examine the key elements of this cycle. 
 

 

Fig. 1. The Data-Driven Requirements Engineering cycle (adapted from [11]). 

3 Explicit Feedback Management 

Explicit feedback is the term that denotes the feedback directly provided by the sys-
tem’s users. User involvement is what differentiates explicit feedback from implicit 
feedback: users may choose if and when to provide such type of feedback. It is worth 
to mention that many researchers still use the traditional term “user feedback” with the 
meaning of explicit feedback. However, we find “explicit feedback” more accurate and 
less prone to ambiguity. 

Roughly speaking, explicit feedback management comprises two phases: gathering 
and analysis. 

3.1 Explicit Feedback Gathering 

Explicit feedback gathering is determined by the following characteristics. 

Types of explicit feedback. As it happens with requirements themselves, explicit feed-
back is most usually provided in natural language. But differently than requirements, 
the language used in explicit feedback is normally unstructured, eventually with typos 
or careless grammar, including emoticons or punctuation signs to emphasise the 
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message given, and hints and clues that makes difficult its analysis [14]. In addition, 
explicit feedback may be multi-modal, i.e. may include images (photos, screenshots, 
…), audio recordings, videos or other attachments. Together with text, or alternatively 
to text, explicit feedback may include some type of evaluation, through ratings (typi-
cally using stars or a number) or emoticons. 

Communication channel. In order to be processable in a DDRE cycle, the communi-
cation channel needs to be persistent and accessible for easy processing. In the case of 
apps, app stores are the most popular channel nowadays. Forums, ticket systems and 
social media (typically Twitter) are also widely used, although the difficulty of discrim-
inating the information increases. There are also tools in the market such as UserVoice2 
and Usabilla3 aimed at adding feedback channels to existing software systems or web 
pages. 

Communication style. Whilst the typical style is push, in which the user has the lead 
and decides when to provide the feedback, we may find also the pull style, in which the 
system prompts the user at designated moments, either a fixed moment (e.g., Skype 
when finalizing a call) or when some condition happens.  

Advanced features. For instance, the capability given to requirement engineers or de-
velopers to rate the quality of the given explicit feedback, which may help to identify 
the most valuable users from the perspective of feedback provision. Also, the possibil-
ity to establish a bidirectional feedback channel in which the requirements engineer 
may interact with the user, to ask for clarifications or more details on the feedback 
initially given. 

3.2 Explicit Feedback Analysis 

Given that, as said above, explicit feedback consists mostly of text written in natural 
language, we focus on this type of feedback in the rest of the subsection. 

The complexity of dealing with natural language is well known from many decades 
ago. As a response to this difficulty, the research area of natural language processing 
(NLP) emerged in the late 40s. NLP explores how computers can be used to understand 
and manipulate natural language text or speech to do useful things [15]. Many disci-
plines have used and are increasingly using NLP with different purposes, and RE is one 
of them [16][17]. NLP techniques in RE research are complemented with machine 
learning (ML), which allows learning from data (in different variations, which may 
involve the human in the loop, e.g. supervised learning [18]). 

In RE, NLP is used for undertaking different types of analysis. In this paper, we 
cover three of them: 

                                                           
2 https://usabilla.com/ 
3 https://www.uservoice.com/ 
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 Categorization: the supervised grouping of feedback items into predefined catego-
ries. 

 Sentiment analysis: the capability of understanding the person’s intention behind her 
feedback. 

 Topic modelling: the unsupervised organization of feedback items into one or more 
thematic topics. 

All of these activities have a common need, namely the need of preprocessing the nat-
ural language text that forms the feedback communicated explicitly by the user.  

Preprocessing. The main purpose of preprocessing is transforming a stream of charac-
ters that form a piece of text, in our case the explicit feedback provided by a user, into 
a syntactic structure formed by lexical units. This activity is typically broken into the 
following steps: 

 Tokenization, which splits a stream of text into a list of words or phrases (the tokens) 
[19]. Stop words like “the”, “an” or “with” are usually removed (some authors con-
sider stop words removal as a step on its own). Stop words are either predefined or 
are computed analysing their frequency, discrimination power and prediction capa-
bility [20]. 

 Stemming or Lemmatization, both aimed at reducing variant forms into a base form 
(for instance, past/present/future of a verb; plural/singular of a noun). While stem-
ming basically “cuts” suffixes [21], lemmatization is able to find inflections of var-
iant forms (e.g., “be” and “was”), looking up headwords in a dictionary [22]. Lem-
matization is not always convenient, e.g. the use of verb tenses may help classifying 
a feedback item into bug or feature request. 

 Part-of-speech (PoS) tagging [23], segments the sentence into syntactic units with 
tags as “adjective” or “verb”). It can be followed by a parsing step that creates a 
parse tree showing the syntactic nature of the text. 

All these techniques face several challenges. For instance, tokenization needs to handle 
multi-word terms. For PoS tagging, the main problem is to determine the right tags for 
those words that allow for more than one; for instance, the word “back” that can be 
labelled as a noun, as a verb or as part of a phrasal verb. 

Once the text is preprocessed, we can further apply other techniques over the result-
ing syntactic structure. 

Categorization. The classical example of categorization in the field of explicit feed-
back analysis is the classification of an explicit feedback item as bug report of feature 
request. For instance, Morales et al. proposed a categorization technique [24] based on 
speech-act analysis [25]. This technique first gathers feedback from discussions held in 
online media (e.g., forums). Then it applies a preprocessing pipeline based on the tech-
niques mentioned above, first removing noisy text and then annotating the resulting 
input with speech-acts using lexico-syntactic rules. Last, it runs some ML algorithms 
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over the annotated sentence in order to classify the feedback into three possible catego-
ries: new feature request, enhancement request or bug report. 

This simple categorization can be further elaborated using finer-grained classifica-
tion schemas. For instance, Guzman et al. implemented a detailed classification of twit-
ter opinions on software [26]. Their classification schema shows that feedback can be 
related not only to particular features (shortcoming, strength, request) or bug reports, 
but also general feedback as “General praise”, “Software price” and others. Further-
more, their schema proposes some general-purpose categories: “Noise” (which means 
“impossible to process”, e.g. too many illegible symbols), “Unclear” (ambiguous), 
“Unrelated” (valid tweet but out of scope of the study) and “Other” (valid but it cannot 
be classified in the predefined categories). 

Sentiment Analysis. It is the process of deciding if a piece of text expresses a particular 
affect or mood [27]. 

Current approaches to sentiment analysis combine the use of dictionaries and other 
syntactic elements [28] with machine learning or even deep learning techniques [29]. 
Guzmán and Maalej [30] proposed an approach based on the assignment of quantitative 
values to different sentence tokens that compose an explicit feedback item. In the gen-
eral case, a sentence may combine positive and negative messages (e.g., “had fun using 
it before but now it is really horrible :( help!!”). Therefore, the individual values are 
combined into two values, the aggregated positive score and the aggregated negative 
score. Constructs as booster words (“really”), emoticons and punctuation emphasis are 
crucial in this assignment of values. 

In DDRE, sentiment analysis may help requirement engineers to understand the gen-
eral position of the user. For instance, consider the sentences “pleeeeeeease add an un-
like button and I will love you forever!!” and “uploading pictures with the app is so 
annoying!” [30]. While both of them are stating some dissatisfaction (asking for an 
additional feature the first, and complaining about a feature the second), the tone is very 
different and sentiment analysis will show that the first user is basically happy with the 
system while the second one is really complaining. 

Topic modelling. This type of unsupervised analysis identifies the topics that best de-
scribe a corpus of knowledge, where each topic is a repeating pattern of co-occurring 
terms in such corpus, described by a probability distribution of words (i.e., the proba-
bility that a word pertains to a topic) [31]. 

Topic modelling is well known in information retrieval for the analysis of large doc-
uments, e.g. in order to recommend contents to readers of newspapers [32], but it has 
spread into software engineering in general, and RE in particular [33]. The most popular 
algorithm used to identify the topics and their words is Latent Dirichlet Allocation 
(LDA) [34], where the word “latent” means that the distribution emerges during the 
analysis by statistical inference. Results are not unique and in fact, one of the most 
challenging issues on putting LDA into action is parameterization. There are several 
parameters to determine: number of topics, number of words per topic, number of iter-
ations in the LDA algorithm for convergence, and others. Another challenging property 



7 

of LDA is instability meaning that it suffers from “order effects”, i.e. the output of the 
algorithm may depend on the order in which the terms are processed. Given these prob-
lems, other algorithms have been formulated, such as the Biterm Topic Model (BTM) 
[35] that models topics by exploring word-word (i.e., biterm) patterns. BTM has over-
performed LDA in the context of short texts [33], which is a typical situation in explicit 
feedback. 

Putting all together. All of the techniques above and others that are not covered in this 
paper (e.g., summarization [36][37]) deal with a particular NLP-related activity, but 
usually it is necessary to combine them in order to achieve a research goal. For instance, 
the ultimate goal of Guzman and Maalej’s paper cited above [30] is to identify the pos-
itive or negative sentiment that users may have with respect to app features. They used 
two apps as examples, Pinterest in Android and Dropbox in iOS, mined reviews in their 
app stores and computed the number of positive and negative reviews they found for 
these features. In order to get these results, they built the workflow presented in Fig. 2. 
From the user reviews, they extracted titles and comments and initiated two parallel 
paths. On the one hand, for each review, they applied the sentiment analysis technique 
outlined above (without preprocessing, in order not to eliminate for instance stop words 
or other elements that may convey emotions). On the other hand, they extracted the 
features in the review by preprocessing their contents first and then extracting fine-
grained features. Last, their grouped the fine-grained features into high-level features 
using topic modelling, combining adequately the sentiment scores. This example is rep-
resentative of the type of solutions prevalent in explicit feedback analysis. 

 

Fig. 2. Guzman and Maalej’s approach to sentiment analysis in app reviews (as appears in [30]). 



8 

It is also worth to mention the existence of a large number of libraries of components 
that implement some of the algorithms mentioned here, e.g. Standford CoreNLP toolkit 
[38]4, NLTK5 and GenSim6 (for similarity analysis). 

4 Implicit Feedback Management 

Implicit feedback is the term that denotes the feedback gathered from the system usage 
as it is used by their users. The main difference with explicit feedback, as said, is that 
data comes from the users without their explicit communication, but with their explicit 
consent. This unobtrusiveness is the main advantage over explicit feedback, although 
instrumentation is generally more complex. 

The origins of implicit feedback come from the information retrieval discipline, 
where implicit feedback techniques are used for query expansion and user profiling in 
information retrieval tasks [39]. Also, the concept was heavily used in the web page 
ranking [40]. In software engineering, implicit feedback is having a momentum in the 
last years. For instance, with the advent of the Internet of Things and smart cities, sen-
sors are continuously gathering data from users and their context. Also, big corporations 
and governments are going in the direction of collecting more and more information 
from citizens, and responses to crisis such as COVID-19 are increasing this trend [41]. 
In the rest of the section, we focus on the use of implicit feedback in DDRE. 

4.1 Types of Implicit Feedback 

The first type of implicit feedback we mention is quality of service (QoS). This is an 
old topic emerging in the 70s-80s in the areas of networking, real-time applications and 
middleware, adopted in the 2000s in the fields of service-oriented computing [42] and 
cloud-based systems [43], but still it plays an important role for analysing contemporary 
systems. QoS include attributes as response time, availability and security, which can 
provide very useful information to understand which parts of the system need improve-
ment. 

The second type is usage data. It may include the individual clicks of the users [44], 
telemetry7, interactions with the user interface and navigational paths (clickthroughs) 
[45]. Usage data can be especially useful for detecting patterns of behaviour that may 
serve to discover unused functionalities or different ways to organize the user interface 
more fit to the real needs of the system users. 

We mention a third type of data, non-verbal human data that can be sensed through 
appropriate sensors [46]. The most popular technique is eye tracking [47], but we can 
also mention gesture, heartrate, face muscles, etc. 

                                                           
4 https://stanfordnlp.github.io/CoreNLP/ 
5 https://www.nltk.org/ 
6 https://pypi.org/project/gensim/ 
7 https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/index.html 
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Different types of feedback may be combined. For instance, Joachims et al. report 
an empirical study in which clickthroughs and eye-tracking are combined to achieve 
better results in web page ranking [48]. 

4.2 Gathering Implicit Feedback  

Implicit feedback is usually stored in logs. Logs are files that contain a trace of the 
behaviour of the user when using the system, in the form of implicit feedback of any of 
the types mentioned above. Each entry in the log represents an interaction. The data 
fields that compose an entry are not standard but we will usually find: the timestamp, 
the user ID, the event type, the type of element, the URL or endpoint invoked, etc. From 
these logs, some typical observations are: which functionalities are most used, which 
navigational paths prevail (or not, even if expected), which calls result often in error 
codes, etc. This information may be enriched with QoS (which may require some ad-
ditional monitoring infrastructure, e.g. in the case of cloud-based systems [49]). All in 
all, this is valuable input for understanding functionalities that are problematic, features 
that are missing (e.g., because the users often follow bizarre navigational paths), fea-
tures that can eventually be merged (because they are always used one after the other), 
etc. 

4.3 Importance of Context 

When analysing feedback, context is utterly important. Both the response of a user and 
the behaviour of the system can be strongly influenced by some contextual character-
istic. For instance, a system may have a good user interface as a web application but a 
terrible user interface in its version for mobile phones. Although context can be pro-
vided explicitly, the usual case is that it is collected as part of the system’s implicit 
feedback, using the same gathering instruments and channels. 

Context is a very wide term and includes classical concepts as time and location, but 
also others as user’s profile and type of device for the connection. Therefore, a great 
amount of context ontologies has been devised especially in the field of context-aware 
computing and self-adaptive systems [50], which can be used as a basis to implement 
the concept of context in an implicit feedback gathering and analysis approach. 

From the point of view of RE, there are some approaches that deal with context by 
defining contextual requirements [51]. A contextual requirement is a requirement 
whose satisfaction is guarded by a condition that represents a context. The context is 
operationalized as a function over a set of context variables. Each variable is sensed 
through one or more monitors whose values are gathered with a monitoring infrastruc-
ture. While the concept of contextual requirement is clear and intuitive, many chal-
lenges arise, as dealing with uncertainty [52] and in general, discovering unknown un-
knowns [53] (e.g., context conditions that are not known in advance). 

4.4 Combining Explicit and Implicit Feedback 

We have seen that explicit and implicit feedback are very different in nature. Explicit 
feedback is mostly related (still) to natural language, while (contextual) implicit 
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feedback has to be mainly with analysing streams of data stored in logs. However, they 
are two different kinds of input for the main purpose: to gather feedback from the user 
in order to understand the actual use and acceptance of the system. The natural question 
that arises is: may these two types of feedback be combined into one single input? For 
instance, if a user provides an explicit complaint about a concrete functionality of the 
system, it may be useful to have available as many implicitly collected data as possible. 
Maybe the user entered the review in a moment where the network experienced some 
downtime, or maybe she was using a particular type of device that does not support 
well this functionality.  

This mixed approach is a hot topic of investigation in the field. One example is the 
FAME approach [54], which implements two streams for data acquisition (see Fig. 3): 
explicit feedback using feedback forms, and runtime events in the form of logs that 
were captured by a monitoring infrastructure. Since implicit feedback comes as a con-
tinuous flow, FAME uses a data lake to ensure performance. Both streams are com-
bined in a component that uses domain ontologies [55] to be able to match concepts 
and inform the requirements engineer in order to elicit new requirements. 

 

 

Fig. 3. The ontology-based FAME approach to integrated explicit and implicit feedback analysis 
(as appearing in [54]). 

As a particular case on this combination of explicit and implicit feedback, we find the 
concept of crowd-based RE. As defined by Groen et al., crowd-based RE “is an um-
brella term for automated or semiautomated approaches to gather and analyse infor-
mation from a crowd to derive validated user requirements” [56]. Implicit feedback is 
aggregated to multi-modal explicit feedback similarly as done in the FAME approach 
[54]. 
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Fig. 4. Actors and their relationships in crowd-based RE (as appearing in [56]). 

Other approaches to combine explicit and implicit feedback in DDRE exist. Wüest 
et al. follow a different strategy, in which implicit feedback is used as a trigger for 
explicit feedback [57]. Their argument is that this approach will engage users to provide 
more explicit feedback, and it will be provided when some situation uncovered by the 
implicit feedback requires to be analysed. It remains as a challenge to transfer these 
approaches into industry projects, which still rely mainly on explicit feedback [58]. 

5 Decision-making 

As Fig. 1 shows, once feedback is gathered and analysed, requirements engineers still 
need some support to make informed decisions. There are two key dimensions to deci-
sion-making in DDRE. First, to visualize the data in an actionable manner and to have 
at hand techniques for further analysis; to this end, requirements engineers may use 
software analytic tools. Second, to arrange these decisions in the form of a software 
release plan. 

5.1 Software Analytic Tools 

According to the outcome of the Dagstuhl Seminar 14261, software analytics is “to 
utilize data-driven approaches to obtain insightful and actionable information to help 
software practitioners with their data related tasks” [59]. This very generic definition 
accommodates a large variety of tools, some of them heavily used by the software en-
gineering community during the development process, e.g. SonarQube8.  

Buse and Zimmermann defined several guidelines for software analytics tools, such 
as easiness of use and interactivity [60]. In addition, they suggested to map indicators 
to features, and this links well to DDRE: when applied to DDRE, the ultimate goal of 

                                                           
8 https://www.sonarqube.org/ 
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a software analytics tool is to assist in the evolution of a requirements specification. 
This means suggesting new requirements, or modifying existing ones (e.g., by enforc-
ing some threshold in a quality requirement, or by changing the priority or business 
value of a requirement). 

To obtain the aforementioned indicators, it is necessary to aggregate the data that 
was gathered as feedback into more elaborated attributes until we reach a level of indi-
cator. These indicators convey actionable information for requirements engineers, e.g. 
product quality, time to market or business value. Usually, the aggregation is multi-
level and can be conducted bottom-up using the classical concept of quality model as 
driver [61]. For instance, the Q-Rapids dashboard (a software analytics tool aimed at 
eliciting quality requirements) [62] builds upon the Quamoco approach to software 
quality model construction [63]. Quamoco proposes the use of utility functions and 
weighted sums in order to define qualitative values for these quality factors. In Q-Rap-
ids, top-level indicators are visualized in a gauge form with three values (ok, warning 
and failure) depending on their distance to a given threshold.  

The Q-Rapids dashboard also implements several techniques suggested by Buse and 
Zimmermann [60], among which we can mention: 

 Visualization capabilities as drill-down navigation, from one indicator to the quality 
factors that compose it. 

 Analysis of trends and summarization of results, to understand the direction of a 
software project. 

 Prediction of the evolution of a particular indicator or some of the quality factors 
used to compute it [64]. 

 Definition and triggering of alerts, to report underperformance or (in combined use 
with prediction) to anticipate future threshold violations. 

 Simulation through what-if analysis, using sliders to understand the effects of 
changes in factors’ values over the indicators. 

Oriol et al. propose to associate mitigation actions to alerts triggered by underperform-
ing quality factors, so that these mitigation actions operate over the requirements spec-
ification [65]. The new requirements are proposed to the requirements engineer as in-
stantiations of requirements patterns stored in a catalogue [66]. Possible instantiations 
of the patterns with a description of their consequences are presented to the require-
ments engineer through the software analytics tool. With a similar aim of identifying 
requirements, Dalpiaz and Parente proposed the RE-SWOT method [67]. RE-SWOT 
aims at eliciting requirements from app store reviews through competitor analysis. Re-
sults are presented to the requirements engineer by means of a dashboard that visualizes 
a Strengths-Weaknessess-Opportunities-Threats analysis of identified features. 

5.2 Release Planning 

The next activity in order to close the data-driven cycle is deciding how to allocate the 
requirements that have emerged or changed, to the next or even further system releases. 
The problem of software release planning is well known in software engineering 
[68][69] and can be stated as follows: given a set of requirements to be allocated, and 
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a set of constraints in terms of resources, budget, and similar criteria, maximize some 
utility or multi-objective function and thus design a release plan, where every require-
ment has a release assigned (or eventually remains undecided or is even discarded) [70]. 

When applied to DDRE, feedback becomes the critical object that guides release 
planning. Having an app's release strategy is a factor that affects the ongoing success 
of mobile apps [71]. For instance, Villaroel et al. [72] propose a technique that pro-
cesses feedback by forming clusters of related reviews (bug reports and new feature 
suggestions) and then prioritizes the clusters according to their: (i) number of reviews, 
(ii) average rating, (iii) difference of cluster average rating and app average rating, (iv) 
difference of ratings assigned by users who reviewed older releases of the app, and (v) 
number of different devices from which users reported reviews (which is a basic but 
still useful combination of explicit and implicit feedback). 

Maalej et al. [7][73] mention other possible ways to adapt usual release planning 
approaches to DDRE characteristics: involving an increasing number of stakeholders 
in the process (from single person to group-based process), relying on real-time and 
rigorous data analytics instead of intuition, or allowing stakeholders to play a more 
proactive role. Several techniques to involve the right stakeholders have been proposed, 
mainly in relation to gamification [74], but also others as applying the concept of liquid 
democracy to requirements engineering [75], so that a stakeholder can nominate others 
to rank a requirement on her behalf when she is not knowledgeable on the requirement’s 
facet. 

6 Challenges 

In this section we outline some challenges ahead for DDRE, both from research and 
from practical perspective. 

Integration with data-oriented analysis cycles. The first challenge is to be able to 
integrate DDRE with existing development processes. Given the data-driven nature, 
companies may need to adopt some data management method, e.g. CRISP-DM [76]. 
CRISP-DM was formulated in the early 2000s as a cycle aimed at supporting data sci-
entists in making data actionable through several well-defined stages: business under-
standing, data understanding, preparation, modelling, evaluation and deployment. Rec-
onciling DDRE and CRISP-DM is a research direction that has been already subject of 
attention [77]. 

Integration with other software engineering approaches. Beyond integration with 
data-oriented approaches, DDRE needs to be integrated also in the software life cycle. 
DDRE is usually connected to agile approaches [78] but we can imagine integration 
with other processes. For instance, Franch et al. [79] explore the integration of DDRE 
into a model-driven development software life cycle, where the generation of the feed-
back gathering infrastructure is integrated with the generation of the system itself, sup-
porting thus evolution of the embedded mechanisms as the system requirements evolve. 
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User motivation and trust. While implicit feedback mainly depends on the availability 
of a feedback gathering infrastructure (although of course privacy concerns are also a 
challenge to consider), explicit feedback requires the engagement of users. Gamifica-
tion is the most usual strategy to motivate users to provide explicit feedback [80], alt-
hough it has shown mixed results in this field; instead, tangible incentives can be more 
attractive to users (e.g., in the gaming domain, alpha/beta players get early versions of 
games). A problem in the opposite direction to having scarce data is the reliability of 
the explicit feedback given. Especially in the app market, the fight against fake reviews 
has become critical. A recent empirical study by Martens and Maalej analysed thor-
oughly the business behind fake reviews, ultimately revealing their significant impact 
[81]. 

Context-driven feedback gathering. To make any feedback management approach 
fully contextual, the feedback gathering instruments themselves need to adapt to con-
text. For instance, the frequency of monitoring can decrease when the device executing 
the system is running out of battery, or on the contrary, it can be increased when it 
comes to monitoring the behaviour of a problematic feature. Approaches for context-
driven implicit feedback gathering exist in the form of adaptive monitoring infrastruc-
tures [82]. For explicit feedback, Almaliki et al. use the concept of Persona [83] to 
gather explicit feedback depending on the profile of the user [84]. 

Analysis of implicit feedback. The analysis of usage logs faces several recurrent chal-
lenges. First, data is usually noisy, both in terms of log entries that are useless, and 
fields that are not useful for the purpose of DDRE. Second, data is often incomplete, so 
that fields may be missing or may be too coarse-grained to be useful. Third, the concept 
of session is not always evident. Sessions are useful because they represent chunks of 
work of a user, and it is convenient to delimit them in the log files. Fourth, as applica-
tions evolve, so should do log files, but then it is difficult to analyse them along time. 
Fifth, data collection should be non-intrusive and as minimal as possible according to 
the objectives sought. Last but not least, anonymization is critical and required by law. 

Use of domain knowledge. While DDRE is based on analysing as much data as possi-
ble, it remains a challenge to investigate whether it can be effectively leveraged using 
domain knowledge. For instance, we have already mentioned in Section 4.4 the use of 
domain ontologies for matching explicit and implicit feedback concepts [54]. If we look 
into the details, this domain ontology bridges both worlds through some connecting 
concepts, for instance TimeStamp, User and Application. 

Adoption by companies. In the addition to the research-oriented challenges above, 
other more practical barriers emerge for companies to adopt DDRE [62][85]. We may 
classify them into three categories: 
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 Organizational. First, the general concept of DDRE needs to be tailored to every 
company. For instance, the indicators to be used for decision-making will be ulti-
mately determined by both the business priorities of the company and the availability 
of data. Second, integration with the company way of working, since it cannot be 
expected that a company will completely change its current processes and practices. 
Last, aligning the vocabulary, which may seem not so important at a first glance, but 
it becomes an important impediment, especially when it comes to discuss about par-
ticular types of quality requirements 

 Value-related. Two complementary challenges are: providing explanations (in-
formative dashboards and generation of reports, for instance), and transparency, al-
lowing decision-makers to drill from recommendations in terms of requirements or 
decisions, down to data. 

 Technological. Given that it is necessary to implement a software infrastructure to 
gather, analyse and decide upon feedback, the technology needs to be as less invasive 
as possible, simplifying the installation of the tool and making efficient its configu-
ration. 

7 Discussion 

7.1 Related areas 

While DDRE is a recent research direction, it is clear from this guided tour that it ben-
efits from consolidated results produced in other software engineering areas that exist 
for many years, some of them already mentioned. We highlight: 

 User-centred design. This area emerged in the 70s [86] and originated the concept 
of user feedback. For instance, as early as in 1971, Hansen reported the following in 
the design of a text editor called Emily: “A log is kept of all user interactions, user 
errors, and system errors. There is a command to let the user type a message to be 
put in the log and this message is followed by a row of asterisks. When the user is 
frustrated he can push a 'sympathy' button. In response, Emily displays at random 
one of ten sympathetic messages. More importantly, frustration is noted in the log 
and the system designer can examine the user's preceding actions to find out where 
his understanding differed from the system implementation” [87]. 

 Process mining. The area of process mining appeared in the mid-90s under the label 
of process discovery, and more related to software process and workflow technolo-
gies [88][89]. These approaches used event-based logs to capture the actions that 
occurred during the execution of the process [90]. In the early 2000s, there was a 
shift of focus into business process and information systems [91] and service design 
[92]. Techniques appearing in these areas [93] can be used in DDRE. 

 Mining software repositories. Software repositories, such as issue and bug tracking 
systems and project management tools, are a valuable source of information that can 
be used to understand software development practices and uncover software quality 
issues [94]. It is used for many purposes like fault prediction, productivity analysis, 
impact analysis and in general, product and process dynamics [95]. In the last years, 
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given the large amounts of data to be processed and the complexity to analyze them, 
there is a corpus of knowledge delivering increasingly sophisticated analysis solu-
tions [96]. Connection to DDRE appears especially when considering software re-
positories’ data as a possible source for software quality defects, which can eventu-
ally generate internal quality requirements (related to maintainability, portability, 
etc.) [61]. 

 Service monitoring. With the advent of service-oriented computing in the early 
2000s [97], one of the areas of research was that of service monitoring. Oriol et al. 
surveyed the different areas in which monitoring is important, and remarkably mon-
itoring quality of service is one of them [98]. An ample body of research on this 
topic appeared, with special emphasis on using the monitoring infrastructure for 
checking service level agreements [99] and even suggesting explanations or repair 
rules when those agreements were violated [100]. 

 Requirements monitoring. The concept of requirements monitoring emerged in the 
mid-90s [101] and is still present in the RE area [102]. Requirements monitoring has 
been frequently used over goal-oriented models, for instance in the context of self-
adaptive systems [103] and obstacle resolution [104]. This concept can also be con-
nected with DDRE, by considering requirements monitoring as part of the software 
analytics activities, and especially focusing on monitoring of user requirements 
[105]. 

It is also worth to mention the relationship of DDRE with the topic of online controlled 
experimentation [106]. This approach to software product development proposes to 
collect data from users based in two competing versions that differ in a particular fea-
ture [107]. It is a generalization of the concept of A/B testing and shares several prin-
ciples with DDRE, as the need of quality data and the convenience to establish neces-
sary competencies [108]. 

Other areas not part of software engineering, as information retrieval or linguistics, 
have also had an influence to DDRE, as shown in this paper. 

7.2 Lessons Learned 

The concepts presented in this paper have been applied in the last years in several EU 
collaborative projects (Q-Rapids [109], SUPERSEDE [110] and OpenReq [111]) 
where large corporations and small-medium enterprises have adopted DDRE at some 
extent. Some observations arising from these projects follow: 

 DDRE is not for free. Adopting DDRE requires both adapting organizational pro-
cesses and mindset and developing some infrastructure in order to make it happen.  

 DDRE is different for every company. There are not two companies adopting the 
proposed DDRE approach in the same way. This means that DDRE needs to define 
general process with high customization capabilities. Situational method engineer-
ing [112] can be helpful in dealing with such diversity, as we have explored in one 
of these projects, SUPERSEDE [113]. 

 DDRE requires expertise in terms of specialized roles, e.g. data scientists accompa-
nying the requirements engineers and software engineers. 
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 DDRE needs to be implemented in an incremental way, in order to gradually master 
its intricacies and complexities, and create awareness in the organization.  

 DDRE requires full transparency. Decisions made during data-informed software 
analysis need to be clearly justified [114] and with a rationale behind such that the 
requirements engineer can understand the decision and then accept or decline, or 
elaborate further. 

8 Conclusions 

In this paper, we have presented a guided tour to data-driven requirements engineering 
(DDRE). The main message is that DDRE offers a great opportunity for delivering 
more business value to systems’ stakeholders by evolving the system according to the 
real needs elicited through the analysis of the gathered feedback and tool-supported 
decision-making. In line with Ebert et al. [77], we can say that those companies that do 
not consider data from system usage in their development processes are increasingly 
putting themselves at competitive disadvantage.   

DDRE changes the focus of traditional requirements engineering from human-ori-
ented to data-oriented, although this does not mean that it can replace completely the 
existing requirements engineering management approaches and in particular, data will 
still need to be analysed and validated by humans. First, data (mainly represented by 
feedback) is agnostic per se, and therefore interpretation by humans is still necessary, 
even if machine learning techniques are adopted. This is why we have presented the 
decision-making process as tool-supported but not as automatic. Second, in order to 
gather feedback, an initial system needs to be made available to users. Requirements 
for this minimal viable product need to be gather without data, i.e. using traditional 
requirement elicitation and prioritization techniques [1]. 

Considering the paragraph above, and the challenges and lessons learned enumerated 
in previous sections, we can conclude that it may not be appropriate to blindly adopt 
DDRE in the context of some companies or systems. At the end, DDRE is another 
approach that composes the requirements engineer toolbox, adding some new activities 
to those that are more traditional [115], to be used wisely in the right moment with the 
right customization. 
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