Abstract
Data-driven approaches are becoming dominant in almost every single software engineering activity, and requirements engineering is not the exception. The analysis of data coming from several sources may indeed become an extremely useful input to requirements elicitation and management. However, benefits do not come for free. Techniques such as natural language processing and machine learning are difficult to master and require high-quality data and specific competences from different fields, whilst their generalization remains as a challenge. This paper introduces the main concepts behind data-driven requirements engineering, provides an overview of the state of the art in the field and identifies the main challenges to be addressed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Quote from Ricardo Valerdi (U. Arizona & SpaceX) slides in seminar “Cost Estimation in Systems Engineering” given at UPC-BarcelonaTech, Sept. 2017.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
Pohl, K.: Requirements Engineering: Fundamentals, Principles and Techniques. Springer, Heidelberg (2010)
Ross, D.T. (ed): Special Collection on Requirement Analysis. IEEE Trans. Softw. Eng. SE-3(1), 2–84 (1977)
Boehm, B.: Software engineering. IEEE Trans. Comput. C-25(12), 1226–1241 (1976)
Kuffel, W.: Extra time saves money. Comput. Lang. (1990)
Spinellis, D.: Code Quality – The Open Source Perspective. Pearson (2006)
PMI: Pulse of the Profession® In-Depth Report: Requirements Management—A Core Competency for Project and Program Success (2014). https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/requirements-management.pdf
Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering. IEEE Softw. 33(1), 48–54 (2016)
Lucas, H.C.: A user-oriented approach to systems design. In: Proceedings of the 26th Annual Conference of the Association for Computing Machinery (ACM), pp. 325–338. ACM Press (1971)
Trotter, P.: User feedback and how to get it. In: Proceedings of the 4th Annual Conference on User Services (SIGUCCS), pp. 130–132. ACM Press (1976)
Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: Proceedings of the 21st International Requirements Engineering Conference (RE), pp. 125–134. IEEE Press (2013)
Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can quality awareness support rapid software development? – A research preview. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54045-0_12
Franch, X., et al.: Data-driven requirements engineering in agile projects: the Q-rapids approach. In: Proceedings of the 25th International Requirements Engineering Conference Workshops (REW), pp. 411–414. IEEE Computer Society (2017)
Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst. Softw. 123, 176–189 (2017)
Hosseini, M., Groen, E.C., Shahri, A., Ali, R.: CRAFT: a crowd-annotated feedback technique. In: Proceedings of the IEEE 25th International Requirements Engineering Conference Workshops (REW), pp. 170–175 (2017)
Chowdhury, G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37, 51–89 (2003)
Zhao, L., et al.: Natural language processing (NLP) for requirements engineering: a systematic mapping study. arXiv:2004.01099v2 [cs.SE] (2020)
Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Natural language processing for requirements engineering; the best is yet to come. IEEE Softw. 35(5), 115–119 (2018)
El Shawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art and open challenges. arXiv:1906.02287v2 [cs.LG] (2019)
Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings of the 14th Conference on Computational Linguistics (COLING),vol. 4, pp. 1106–1110. ACM Press (1992)
Ladani, D.J., Desai, N.P.: Stopword identification and removal techniques on TC and IR applications: a survey. In: Proceedings of the 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 466–472. IEEE Press (2020)
Singh, J., Gupta, V.: A systematic review of text stemming techniques. Artif. Intell. Rev. 48, 157–217 (2017). https://doi.org/10.1007/s10462-016-9498-2
Balakrishnan, V., Lloyd-Yemoh, E.: Stemming and lemmatization: a comparison of retrieval performances. Lect. Notes Softw. Eng. 2(3), 262–267 (2014)
Abney, S.: Part-of-speech tagging and partial parsing. In: Young, S., Bloothooft, G. (eds.) Corpus-Based Methods in Language and Speech Processing. Text, Speech and Language Technology, vol. 2, pp. 118–136. Springer, Heidelberg (1997). https://doi.org/10.1007/978-94-017-1183-8_4
Morales-Ramirez, I., Kifetew, F.M., Perini, A.: Speech-acts based analysis for requirements discovery from online discussions. Inf. Syst. 86, 94–112 (2019)
Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)
Guzman, E., Alkadhi, R., Seyff, N.: A needle in a haystack: what do twitter users say about software? In: Proceedings of the 24th International Requirements Engineering Conference (RE), pp. 96–105. IEEE Computer Society (2016)
Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language processing. In: Proceedings of the 2nd international Conference on Knowledge Capture (K-CAP), pp. 70–77. ACM Press (2003)
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Data Min. Knowl. Discov. 8(4), e1253 (2018)
Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment analysis of app reviews. In: Proceedings of the 22nd International Requirements Engineering Conference (RE), pp. 153–162. IEEE Computer Society (2014)
Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), pp. 977–984. ACM Press (2006)
Jacobi, C., van Atteveldt, W., Welbers, K.: Quantitative analysis of large amounts of journalistic texts using topic modelling. Digit. J. 4(1), 89–106 (2016)
Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K.: What works better? A study of classifying requirements. arXiv:1707.02358 [cs.SE] (2017)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In Proceedings of the 22nd International Conference on World Wide Web (WWW), pp. 1445–1456. ACM press (2013)
Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-3223-4_3
Allahyari, M., et al.: Text summarization techniques: a brief survey. arXiv:1707.02268v3 [cs.CL] (2017)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations (ACL), pp. 55–60 (2014)
Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. ACM SIGIR Forum 37(2), 18–28 (2003)
Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 19–26. ACM Press (2006)
Carvalho, V.M., et al.: Tracking the Covid-19 crisis with high-resolution transaction data. CEPR Discussion Paper No. DP14642 (2020)
Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing. Communun. ACM 46(1), 24–28 (2003)
Abdelmaboud, A., Jawawi, D.N.A., Ghani, I., Elsafi, A., Kitchenham, B.: Quality of service approaches in cloud computing: a systematic mapping study. J. Syst. Softw. 101, 159–179 (2015)
Janes, A.: Non-distracting, continuous collection of software development process data. In: Nalepa, G.J., Baumeister, J. (eds.) Synergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626, pp. 275–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4_13
Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 133–142. ACM Press (2002)
Harrigan, J., Rosenthal, R., Scherer, K. (eds.): The New Handbook of Methods in Nonverbal Behavior Research. Oxford University Press, Oxford (2005)
Sharafi, Z., Soh, Z., Guéhéneuc, Y.-G.: A systematic literature review on the usage of eye-tracking in software engineering. Inf. Softw. Technol. 67, 79–107 (2015)
Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 154–161. ACM Press (2005)
Kertesz, A., et al.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013). https://doi.org/10.1007/s10723-013-9269-0
Cabrera, O., Franch, X., Marco, J.: Ontology-based context modeling in service-oriented computing: a systematic mapping. Data Knowl. Eng. 110, 24–53 (2017)
Ali, R., Dalpiaz, F., Giorgini, P.: Reasoning with contextual requirements: detecting inconsistency and conflicts. Inf. Softw. Technol. 55, 35–57 (2013)
Knauss, A., Damian, D.E., Franch, X., Rook, A., Müller, H.A., Thomo, A.: ACon: a learning-based approach to deal with uncertainty in contextual requirements at runtime. Inf. Softw. Technol. 70, 85–99 (2016)
Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In Proceedings of the 21st International Requirements Engineering Conference (RE), pp. 92–104. IEEE Press (2013)
Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining user feedback and monitoring. In: Proceedings of the 26th International Requirements Engineering Conference (RE), pp. 217–227. IEEE Computer Society (2018)
McDaniel, M., Storey, V.C.: Evaluating domain ontologies: clarification, classification, and challenges. ACM Comput. Surv. 52(4), Article 70 (2019)
Groen, E.C., et al.: The crowd in requirements engineering: the landscape and challenges. IEEE Softw. 34(2), 44–52 (2017)
Wüest, D., Fotrousi, F., Fricker, S.: Combining monitoring and autonomous feedback requests to elicit actionable knowledge of system use. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 209–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_16
Johanssen, J.O., Kleebaum, A., Bruegge, B., Paech, B.: How do practitioners capture and utilize user feedback during continuous software engineering? In: Proceedings of the 27th International Requirements Engineering Conference (RE), pp. 153–164. IEEE Press (2019)
Gall, H., Menzies, T., Williams, L., Zimmermann, T. (eds.): Software development analytics. Dagstuhl Rep. 4(6), 64–83 (2014)
Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics. In: Proceedings of the 34th International Conference on Software Engineering (ICSE), pp. 987–996. IEEE Press (2012)
The ISO Organization: ISO/IEC 25010:2011 –Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models (2011)
Martínez-Fernández, S., et al.: Continuously assessing and improving software quality with software analytics tools: a case study. IEEE Access 7, 68219–68239 (2019)
Wagner, S., et al.: Operationalised product quality models and assessment: the quamoco approach. Inf. Softw. Technol. 62, 101–123 (2015)
Choraś, M., Kozik, R., Pawlicki, M., Hołubowicz, W., Franch, X.: Software development metrics prediction using time series methods. In: Saeed, K., Chaki, R., Janev, V. (eds.) CISIM 2019. LNCS, vol. 11703, pp. 311–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28957-7_26
Oriol, M., et al.: Data-driven and tool-supported elicitation of quality requirements in agile companies. Softw. Qual. J. 28(3), 931–963 (2020). https://doi.org/10.1007/s11219-020-09509-y. (in press)
Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C.: PABRE: pattern-based requirements elicitation. In: Proceedings of the 3rd International Conference on Research Challenges in Information Science (RCIS), pp. 81–92. IEEE Press (2009)
Dalpiaz, F., Parente, M.: RE-SWOT: from user feedback to requirements via competitor analysis. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 55–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_4
Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A systematic review on strategic release planning models. Inf. Softw. Technol. 52(3), 237–248 (2010)
Ameller, D., Farré, C., Franch, X., Rufian, G.: A survey on software release planning models. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 48–65. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49094-6_4
Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf. Softw. Technol. 46(4), 243–253 (2004)
Nayebi, M., Adams, B., Ruhe, G.: Release practices for mobile apps – what do users and developers think? In: Proceedings of the 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), pp. 552–562 (2016)
Villarroel, L., Bavota, G., Russo, B., Oliveto, R., di Penta, M.: Release planning of mobile apps based on user reviews. In: Proceedings of the 38th International Conference on Software Engineering (ICSE), pp. 14–24. IEEE Computer Society (2016)
Maalej, W., Nayebi, M., Ruhe, G.: Data-driven requirements engineering - an update. In: Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 289–290 (2019)
Kifetew, F.M., et al.: Gamifying collaborative prioritization: does pointsification work? In: Proceedings of the 25th International Requirements Engineering Conference (RE), pp. 322–331. IEEE Press (2017)
Johann, T., Maalej, W.: Democratic mass participation of users in requirements engineering? In: Proceedings of the 23rd International Requirements Engineering Conference (RE), pp. 256–261. IEEE Press (2015)
Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous. 4(5), 13–22 (2000)
Ebert, C., Heidrich, J., Martinez-Fernandez, S., Trendowicz, A.: Data science: technologies for better software. IEEE Softw. 36(6), 66–72 (2019)
Svensson, R.B., Feldt, R., Torkar, R.: The unfulfilled potential of data-driven decision making in agile software development. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7_5
Franch, X., et al.: Towards integrating data-driven requirements engineering into the software development process: a vision paper. In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 135–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44429-7_10
Dalpiaz, F., Snijders, R., Brinkkemper, S., Hosseini, M., Shahri, A., Ali, R.: Engaging the crowd of stakeholders in requirements engineering via gamification. In: Stieglitz, S., Lattemann, C., Robra-Bissantz, S., Zarnekow, R., Brockmann, T. (eds.) Gamification. PI, pp. 123–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45557-0_9
Martens, D., Maalej, W.: Towards detecting and understanding fake reviews in app stores. Empir. Eng. 24, 3316–3355 (2019). https://doi.org/10.1007/s10664-019-09706-9
Zavala, E., Franch, X., Marco, J.: Adaptive monitoring: a systematic mapping. Inf. Softw. Technol. 105, 161–189 (2019)
Pruitt, J., Grudin, J.: Personas: practice and theory. In: Proceedings of the 2003 Conference on Designing for User Experiences (DUX), pp. 1–15. ACM Press (2003)
Almaliki, M., Ncube, C., Ali, R.: Adaptive software-based feedback acquisition: a persona-based design. In: Proceedings of the 9th International Conference on Research Challenges in Information Science (RCIS), pp. 100–111. IEEE Press (2015)
Choras, M., et al.: Measuring and improving agile processes in a small-size software development company. IEEE Access 8, 78452–78466 (2020)
Kling, R.: The organizational context of user-centered software designs. MIS Q. 1(4), 41–52 (1977)
Hansen, W.J.: User engineering principles for interactive systems. In: Proceedings of the Fall Joint Computer Conference (AFIPS), pp. 523–532. ACM Press (1971)
Cook, J.E., Wolf, A.L.: Automating process discovery through event-data analysis. In: Proceedings of the 17th International Conference on Software Engineering (ICSE), pp. 73–82. IEEE Press (1995)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0101003
Wolf, A.L., Rosenblum, D.S.: A study in software process data capture and analysis. In: Proceedings of the 2nd International Conference on the Software Process-Continuous Software Process Improvement (SPCON), pp. 115–124. IEEE Press (1993)
van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3
van der Aalst, W.: Service mining: using process mining to discover, check, and improve service behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (2013)
Garcia, C.D.S., et al.: Process mining techniques and applications – a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)
Hassan, A.E.: Mining software repositories to assist developers and support managers. In: Proceedings of the 22nd IEEE International Conference on Software Maintenance (ICSM), pp. 339–342. IEEE Press (2006)
Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for mining software repositories in the context of software evolution. J. Softw. Evol. Process 19(2), 77–131 (2007)
Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software Data. Elsevier, Amsterdam (2016)
Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing. Commun. ACM 46(10), 24–28 (2003)
Oriol, M., Franch, X., Marco, J.: Monitoring the service-based system lifecycle with SALMon. Expert Syst. Appl. 42(19), 6507–6521 (2015)
Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and monitoring SLAs in complex service based systems. In: Proceedings of the 2009 IEEE International Conference on Web Services (ICWS), pp. 783–790. IEEE Press (2009)
Müller, C., et al.: Comprehensive explanation of SLA violations at runtime. IEEE Trans. Serv. Comput. 7(2), 168–183 (2014)
Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proceedings of the 2nd IEEE International Symposium on Requirements Engineering (ISRE), pp. 140–147. IEEE Press (1995)
Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements monitoring frameworks: a systematic review. Inf. Softw. Technol. 80, 89–109 (2016)
Oriol, M., Qureshi, N.A., Franch, X., Perini, A., Marco, J.: Requirements monitoring for adaptive service-based applications. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol. 7195, pp. 280–287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28714-5_25
Cailliau, A., van Lamsweerde, A.: Runtime monitoring and resolution of probabilistic obstacles to system goals. ACM Trans. Auton. Adapt. Syst. 14(1), Article 3 (2019)
Robinson, W.N.: Seeking quality through user-goal monitoring. IEEE Softw. 26(5), 58–65 (2009)
Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled experiments at large scale. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1168–1176. ACM Press (2013)
Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Holmström Olsson, H., Bosch, J.: Experimentation growth: evolving trustworthy A/B testing capabilities in online software companies. J. Softw. Evol. Process. 30, e2113 (2018)
Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)
Franch, X., Lopez, L., Martínez-Fernández, S., Oriol, M., Rodríguez, P., Trendowicz, A.: Quality-aware rapid software development project: the Q-rapids project. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS, vol. 11771, pp. 378–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29852-4_32
Perini, A.: Data-driven requirements engineering. The SUPERSEDE way. In: Lossio-Ventura, J.A., Muñante, D., Alatrista-Salas, H. (eds.) SIMBig 2018. CCIS, vol. 898, pp. 13–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11680-4_3
Felfernig, A., Stetinger, M., Falkner, A., Atas, M., Franch, X., Palomares, C.: OpenReq: recommender systems in requirements engineering. In: Proceedings of the International Workshop on Recommender Systems and Social Network Analysis (RS-SNA), pp. 1–4. CEUR 2025 (2017)
Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational Method Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41467-1
Franch, X., et al.: A situational approach for the definition and tailoring of a data-driven software evolution method. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 603–618. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_37
Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics. In: Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 53–56. ACM Press (2018)
Franch, X., Palomares, C., Gorschek, T.: On the requirements engineer role. Commun. ACM (in press). http://dx.doi.org/10.1145/3418292
Acknowledgment
This work is partially supported by the GENESIS project, funded by the Spanish Ministerio de Ciencia e Innovación under contract TIN2016-79269-R. The author wants to deeply thank Fabiano Dalpiaz, Silverio Martínez-Fernández and Marc Oriol for their comments and suggestions over a first draft of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Franch, X. (2021). Data-Driven Requirements Engineering: A Guided Tour. In: Ali, R., Kaindl, H., Maciaszek, L.A. (eds) Evaluation of Novel Approaches to Software Engineering. ENASE 2020. Communications in Computer and Information Science, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-70006-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-70006-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70005-8
Online ISBN: 978-3-030-70006-5
eBook Packages: Computer ScienceComputer Science (R0)