Skip to main content

Data-Driven Requirements Engineering: A Guided Tour

  • Conference paper
  • First Online:
Evaluation of Novel Approaches to Software Engineering (ENASE 2020)

Abstract

Data-driven approaches are becoming dominant in almost every single software engineering activity, and requirements engineering is not the exception. The analysis of data coming from several sources may indeed become an extremely useful input to requirements elicitation and management. However, benefits do not come for free. Techniques such as natural language processing and machine learning are difficult to master and require high-quality data and specific competences from different fields, whilst their generalization remains as a challenge. This paper introduces the main concepts behind data-driven requirements engineering, provides an overview of the state of the art in the field and identifies the main challenges to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Quote from Ricardo Valerdi (U. Arizona & SpaceX) slides in seminar “Cost Estimation in Systems Engineering” given at UPC-BarcelonaTech, Sept. 2017.

  2. 2.

    https://usabilla.com/.

  3. 3.

    https://www.uservoice.com/.

  4. 4.

    https://stanfordnlp.github.io/CoreNLP/.

  5. 5.

    https://www.nltk.org/.

  6. 6.

    https://pypi.org/project/gensim/.

  7. 7.

    https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/index.html.

  8. 8.

    https://www.sonarqube.org/.

References

  1. Pohl, K.: Requirements Engineering: Fundamentals, Principles and Techniques. Springer, Heidelberg (2010)

    Book  Google Scholar 

  2. Ross, D.T. (ed): Special Collection on Requirement Analysis. IEEE Trans. Softw. Eng. SE-3(1), 2–84 (1977)

    Google Scholar 

  3. Boehm, B.: Software engineering. IEEE Trans. Comput. C-25(12), 1226–1241 (1976)

    Article  MATH  Google Scholar 

  4. Kuffel, W.: Extra time saves money. Comput. Lang. (1990)

    Google Scholar 

  5. Spinellis, D.: Code Quality – The Open Source Perspective. Pearson (2006)

    Google Scholar 

  6. PMI: Pulse of the Profession® In-Depth Report: Requirements Management—A Core Competency for Project and Program Success (2014). https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/requirements-management.pdf

  7. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering. IEEE Softw. 33(1), 48–54 (2016)

    Article  Google Scholar 

  8. Lucas, H.C.: A user-oriented approach to systems design. In: Proceedings of the 26th Annual Conference of the Association for Computing Machinery (ACM), pp. 325–338. ACM Press (1971)

    Google Scholar 

  9. Trotter, P.: User feedback and how to get it. In: Proceedings of the 4th Annual Conference on User Services (SIGUCCS), pp. 130–132. ACM Press (1976)

    Google Scholar 

  10. Pagano, D., Maalej, W.: User feedback in the appstore: an empirical study. In: Proceedings of the 21st International Requirements Engineering Conference (RE), pp. 125–134. IEEE Press (2013)

    Google Scholar 

  11. Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can quality awareness support rapid software development? – A research preview. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54045-0_12

    Chapter  Google Scholar 

  12. Franch, X., et al.: Data-driven requirements engineering in agile projects: the Q-rapids approach. In: Proceedings of the 25th International Requirements Engineering Conference Workshops (REW), pp. 411–414. IEEE Computer Society (2017)

    Google Scholar 

  13. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst. Softw. 123, 176–189 (2017)

    Article  Google Scholar 

  14. Hosseini, M., Groen, E.C., Shahri, A., Ali, R.: CRAFT: a crowd-annotated feedback technique. In: Proceedings of the IEEE 25th International Requirements Engineering Conference Workshops (REW), pp. 170–175 (2017)

    Google Scholar 

  15. Chowdhury, G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37, 51–89 (2003)

    Article  Google Scholar 

  16. Zhao, L., et al.: Natural language processing (NLP) for requirements engineering: a systematic mapping study. arXiv:2004.01099v2 [cs.SE] (2020)

  17. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Natural language processing for requirements engineering; the best is yet to come. IEEE Softw. 35(5), 115–119 (2018)

    Article  Google Scholar 

  18. El Shawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art and open challenges. arXiv:1906.02287v2 [cs.LG] (2019)

  19. Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings of the 14th Conference on Computational Linguistics (COLING),vol. 4, pp. 1106–1110. ACM Press (1992)

    Google Scholar 

  20. Ladani, D.J., Desai, N.P.: Stopword identification and removal techniques on TC and IR applications: a survey. In: Proceedings of the 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 466–472. IEEE Press (2020)

    Google Scholar 

  21. Singh, J., Gupta, V.: A systematic review of text stemming techniques. Artif. Intell. Rev. 48, 157–217 (2017). https://doi.org/10.1007/s10462-016-9498-2

    Article  Google Scholar 

  22. Balakrishnan, V., Lloyd-Yemoh, E.: Stemming and lemmatization: a comparison of retrieval performances. Lect. Notes Softw. Eng. 2(3), 262–267 (2014)

    Article  Google Scholar 

  23. Abney, S.: Part-of-speech tagging and partial parsing. In: Young, S., Bloothooft, G. (eds.) Corpus-Based Methods in Language and Speech Processing. Text, Speech and Language Technology, vol. 2, pp. 118–136. Springer, Heidelberg (1997). https://doi.org/10.1007/978-94-017-1183-8_4

    Chapter  Google Scholar 

  24. Morales-Ramirez, I., Kifetew, F.M., Perini, A.: Speech-acts based analysis for requirements discovery from online discussions. Inf. Syst. 86, 94–112 (2019)

    Article  Google Scholar 

  25. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)

    Book  Google Scholar 

  26. Guzman, E., Alkadhi, R., Seyff, N.: A needle in a haystack: what do twitter users say about software? In: Proceedings of the 24th International Requirements Engineering Conference (RE), pp. 96–105. IEEE Computer Society (2016)

    Google Scholar 

  27. Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language processing. In: Proceedings of the 2nd international Conference on Knowledge Capture (K-CAP), pp. 70–77. ACM Press (2003)

    Google Scholar 

  28. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  29. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Data Min. Knowl. Discov. 8(4), e1253 (2018)

    Google Scholar 

  30. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment analysis of app reviews. In: Proceedings of the 22nd International Requirements Engineering Conference (RE), pp. 153–162. IEEE Computer Society (2014)

    Google Scholar 

  31. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), pp. 977–984. ACM Press (2006)

    Google Scholar 

  32. Jacobi, C., van Atteveldt, W., Welbers, K.: Quantitative analysis of large amounts of journalistic texts using topic modelling. Digit. J. 4(1), 89–106 (2016)

    Google Scholar 

  33. Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K.: What works better? A study of classifying requirements. arXiv:1707.02358 [cs.SE] (2017)

  34. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  35. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In Proceedings of the 22nd International Conference on World Wide Web (WWW), pp. 1445–1456. ACM press (2013)

    Google Scholar 

  36. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-3223-4_3

    Chapter  Google Scholar 

  37. Allahyari, M., et al.: Text summarization techniques: a brief survey. arXiv:1707.02268v3 [cs.CL] (2017)

  38. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations (ACL), pp. 55–60 (2014)

    Google Scholar 

  39. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. ACM SIGIR Forum 37(2), 18–28 (2003)

    Article  Google Scholar 

  40. Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 19–26. ACM Press (2006)

    Google Scholar 

  41. Carvalho, V.M., et al.: Tracking the Covid-19 crisis with high-resolution transaction data. CEPR Discussion Paper No. DP14642 (2020)

    Google Scholar 

  42. Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing. Communun. ACM 46(1), 24–28 (2003)

    Article  Google Scholar 

  43. Abdelmaboud, A., Jawawi, D.N.A., Ghani, I., Elsafi, A., Kitchenham, B.: Quality of service approaches in cloud computing: a systematic mapping study. J. Syst. Softw. 101, 159–179 (2015)

    Article  Google Scholar 

  44. Janes, A.: Non-distracting, continuous collection of software development process data. In: Nalepa, G.J., Baumeister, J. (eds.) Synergies Between Knowledge Engineering and Software Engineering. AISC, vol. 626, pp. 275–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64161-4_13

    Chapter  Google Scholar 

  45. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 133–142. ACM Press (2002)

    Google Scholar 

  46. Harrigan, J., Rosenthal, R., Scherer, K. (eds.): The New Handbook of Methods in Nonverbal Behavior Research. Oxford University Press, Oxford (2005)

    Google Scholar 

  47. Sharafi, Z., Soh, Z., Guéhéneuc, Y.-G.: A systematic literature review on the usage of eye-tracking in software engineering. Inf. Softw. Technol. 67, 79–107 (2015)

    Article  Google Scholar 

  48. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp. 154–161. ACM Press (2005)

    Google Scholar 

  49. Kertesz, A., et al.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013). https://doi.org/10.1007/s10723-013-9269-0

    Article  Google Scholar 

  50. Cabrera, O., Franch, X., Marco, J.: Ontology-based context modeling in service-oriented computing: a systematic mapping. Data Knowl. Eng. 110, 24–53 (2017)

    Article  Google Scholar 

  51. Ali, R., Dalpiaz, F., Giorgini, P.: Reasoning with contextual requirements: detecting inconsistency and conflicts. Inf. Softw. Technol. 55, 35–57 (2013)

    Article  Google Scholar 

  52. Knauss, A., Damian, D.E., Franch, X., Rook, A., Müller, H.A., Thomo, A.: ACon: a learning-based approach to deal with uncertainty in contextual requirements at runtime. Inf. Softw. Technol. 70, 85–99 (2016)

    Article  Google Scholar 

  53. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In Proceedings of the 21st International Requirements Engineering Conference (RE), pp. 92–104. IEEE Press (2013)

    Google Scholar 

  54. Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining user feedback and monitoring. In: Proceedings of the 26th International Requirements Engineering Conference (RE), pp. 217–227. IEEE Computer Society (2018)

    Google Scholar 

  55. McDaniel, M., Storey, V.C.: Evaluating domain ontologies: clarification, classification, and challenges. ACM Comput. Surv. 52(4), Article 70 (2019)

    Google Scholar 

  56. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and challenges. IEEE Softw. 34(2), 44–52 (2017)

    Article  Google Scholar 

  57. Wüest, D., Fotrousi, F., Fricker, S.: Combining monitoring and autonomous feedback requests to elicit actionable knowledge of system use. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 209–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_16

    Chapter  Google Scholar 

  58. Johanssen, J.O., Kleebaum, A., Bruegge, B., Paech, B.: How do practitioners capture and utilize user feedback during continuous software engineering? In: Proceedings of the 27th International Requirements Engineering Conference (RE), pp. 153–164. IEEE Press (2019)

    Google Scholar 

  59. Gall, H., Menzies, T., Williams, L., Zimmermann, T. (eds.): Software development analytics. Dagstuhl Rep. 4(6), 64–83 (2014)

    Google Scholar 

  60. Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics. In: Proceedings of the 34th International Conference on Software Engineering (ICSE), pp. 987–996. IEEE Press (2012)

    Google Scholar 

  61. The ISO Organization: ISO/IEC 25010:2011 –Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models (2011)

    Google Scholar 

  62. Martínez-Fernández, S., et al.: Continuously assessing and improving software quality with software analytics tools: a case study. IEEE Access 7, 68219–68239 (2019)

    Article  Google Scholar 

  63. Wagner, S., et al.: Operationalised product quality models and assessment: the quamoco approach. Inf. Softw. Technol. 62, 101–123 (2015)

    Article  Google Scholar 

  64. Choraś, M., Kozik, R., Pawlicki, M., Hołubowicz, W., Franch, X.: Software development metrics prediction using time series methods. In: Saeed, K., Chaki, R., Janev, V. (eds.) CISIM 2019. LNCS, vol. 11703, pp. 311–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28957-7_26

    Chapter  Google Scholar 

  65. Oriol, M., et al.: Data-driven and tool-supported elicitation of quality requirements in agile companies. Softw. Qual. J. 28(3), 931–963 (2020). https://doi.org/10.1007/s11219-020-09509-y. (in press)

    Article  Google Scholar 

  66. Renault, S., Mendez-Bonilla, O., Franch, X., Quer, C.: PABRE: pattern-based requirements elicitation. In: Proceedings of the 3rd International Conference on Research Challenges in Information Science (RCIS), pp. 81–92. IEEE Press (2009)

    Google Scholar 

  67. Dalpiaz, F., Parente, M.: RE-SWOT: from user feedback to requirements via competitor analysis. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 55–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_4

    Chapter  Google Scholar 

  68. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A systematic review on strategic release planning models. Inf. Softw. Technol. 52(3), 237–248 (2010)

    Article  Google Scholar 

  69. Ameller, D., Farré, C., Franch, X., Rufian, G.: A survey on software release planning models. In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 48–65. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49094-6_4

    Chapter  Google Scholar 

  70. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf. Softw. Technol. 46(4), 243–253 (2004)

    Article  Google Scholar 

  71. Nayebi, M., Adams, B., Ruhe, G.: Release practices for mobile apps – what do users and developers think? In: Proceedings of the 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), pp. 552–562 (2016)

    Google Scholar 

  72. Villarroel, L., Bavota, G., Russo, B., Oliveto, R., di Penta, M.: Release planning of mobile apps based on user reviews. In: Proceedings of the 38th International Conference on Software Engineering (ICSE), pp. 14–24. IEEE Computer Society (2016)

    Google Scholar 

  73. Maalej, W., Nayebi, M., Ruhe, G.: Data-driven requirements engineering - an update. In: Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 289–290 (2019)

    Google Scholar 

  74. Kifetew, F.M., et al.: Gamifying collaborative prioritization: does pointsification work? In: Proceedings of the 25th International Requirements Engineering Conference (RE), pp. 322–331. IEEE Press (2017)

    Google Scholar 

  75. Johann, T., Maalej, W.: Democratic mass participation of users in requirements engineering? In: Proceedings of the 23rd International Requirements Engineering Conference (RE), pp. 256–261. IEEE Press (2015)

    Google Scholar 

  76. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous. 4(5), 13–22 (2000)

    Google Scholar 

  77. Ebert, C., Heidrich, J., Martinez-Fernandez, S., Trendowicz, A.: Data science: technologies for better software. IEEE Softw. 36(6), 66–72 (2019)

    Article  Google Scholar 

  78. Svensson, R.B., Feldt, R., Torkar, R.: The unfulfilled potential of data-driven decision making in agile software development. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7_5

    Chapter  Google Scholar 

  79. Franch, X., et al.: Towards integrating data-driven requirements engineering into the software development process: a vision paper. In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 135–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44429-7_10

    Chapter  Google Scholar 

  80. Dalpiaz, F., Snijders, R., Brinkkemper, S., Hosseini, M., Shahri, A., Ali, R.: Engaging the crowd of stakeholders in requirements engineering via gamification. In: Stieglitz, S., Lattemann, C., Robra-Bissantz, S., Zarnekow, R., Brockmann, T. (eds.) Gamification. PI, pp. 123–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45557-0_9

    Chapter  Google Scholar 

  81. Martens, D., Maalej, W.: Towards detecting and understanding fake reviews in app stores. Empir. Eng. 24, 3316–3355 (2019). https://doi.org/10.1007/s10664-019-09706-9

    Article  Google Scholar 

  82. Zavala, E., Franch, X., Marco, J.: Adaptive monitoring: a systematic mapping. Inf. Softw. Technol. 105, 161–189 (2019)

    Article  Google Scholar 

  83. Pruitt, J., Grudin, J.: Personas: practice and theory. In: Proceedings of the 2003 Conference on Designing for User Experiences (DUX), pp. 1–15. ACM Press (2003)

    Google Scholar 

  84. Almaliki, M., Ncube, C., Ali, R.: Adaptive software-based feedback acquisition: a persona-based design. In: Proceedings of the 9th International Conference on Research Challenges in Information Science (RCIS), pp. 100–111. IEEE Press (2015)

    Google Scholar 

  85. Choras, M., et al.: Measuring and improving agile processes in a small-size software development company. IEEE Access 8, 78452–78466 (2020)

    Article  Google Scholar 

  86. Kling, R.: The organizational context of user-centered software designs. MIS Q. 1(4), 41–52 (1977)

    Article  Google Scholar 

  87. Hansen, W.J.: User engineering principles for interactive systems. In: Proceedings of the Fall Joint Computer Conference (AFIPS), pp. 523–532. ACM Press (1971)

    Google Scholar 

  88. Cook, J.E., Wolf, A.L.: Automating process discovery through event-data analysis. In: Proceedings of the 17th International Conference on Software Engineering (ICSE), pp. 73–82. IEEE Press (1995)

    Google Scholar 

  89. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0101003

    Chapter  Google Scholar 

  90. Wolf, A.L., Rosenblum, D.S.: A study in software process data capture and analysis. In: Proceedings of the 2nd International Conference on the Software Process-Continuous Software Process Improvement (SPCON), pp. 115–124. IEEE Press (1993)

    Google Scholar 

  91. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  92. van der Aalst, W.: Service mining: using process mining to discover, check, and improve service behavior. IEEE Trans. Serv. Comput. 6(4), 525–535 (2013)

    Article  Google Scholar 

  93. Garcia, C.D.S., et al.: Process mining techniques and applications – a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)

    Article  Google Scholar 

  94. Hassan, A.E.: Mining software repositories to assist developers and support managers. In: Proceedings of the 22nd IEEE International Conference on Software Maintenance (ICSM), pp. 339–342. IEEE Press (2006)

    Google Scholar 

  95. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for mining software repositories in the context of software evolution. J. Softw. Evol. Process 19(2), 77–131 (2007)

    Article  Google Scholar 

  96. Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software Data. Elsevier, Amsterdam (2016)

    Google Scholar 

  97. Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing. Commun. ACM 46(10), 24–28 (2003)

    Article  Google Scholar 

  98. Oriol, M., Franch, X., Marco, J.: Monitoring the service-based system lifecycle with SALMon. Expert Syst. Appl. 42(19), 6507–6521 (2015)

    Article  Google Scholar 

  99. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and monitoring SLAs in complex service based systems. In: Proceedings of the 2009 IEEE International Conference on Web Services (ICWS), pp. 783–790. IEEE Press (2009)

    Google Scholar 

  100. Müller, C., et al.: Comprehensive explanation of SLA violations at runtime. IEEE Trans. Serv. Comput. 7(2), 168–183 (2014)

    Article  Google Scholar 

  101. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proceedings of the 2nd IEEE International Symposium on Requirements Engineering (ISRE), pp. 140–147. IEEE Press (1995)

    Google Scholar 

  102. Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements monitoring frameworks: a systematic review. Inf. Softw. Technol. 80, 89–109 (2016)

    Article  Google Scholar 

  103. Oriol, M., Qureshi, N.A., Franch, X., Perini, A., Marco, J.: Requirements monitoring for adaptive service-based applications. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol. 7195, pp. 280–287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28714-5_25

    Chapter  Google Scholar 

  104. Cailliau, A., van Lamsweerde, A.: Runtime monitoring and resolution of probabilistic obstacles to system goals. ACM Trans. Auton. Adapt. Syst. 14(1), Article 3 (2019)

    Google Scholar 

  105. Robinson, W.N.: Seeking quality through user-goal monitoring. IEEE Softw. 26(5), 58–65 (2009)

    Article  Google Scholar 

  106. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled experiments at large scale. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1168–1176. ACM Press (2013)

    Google Scholar 

  107. Fabijan, A., Dmitriev, P., McFarland, C., Vermeer, L., Holmström Olsson, H., Bosch, J.: Experimentation growth: evolving trustworthy A/B testing capabilities in online software companies. J. Softw. Evol. Process. 30, e2113 (2018)

    Article  Google Scholar 

  108. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)

    Article  Google Scholar 

  109. Franch, X., Lopez, L., Martínez-Fernández, S., Oriol, M., Rodríguez, P., Trendowicz, A.: Quality-aware rapid software development project: the Q-rapids project. In: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS, vol. 11771, pp. 378–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29852-4_32

    Chapter  Google Scholar 

  110. Perini, A.: Data-driven requirements engineering. The SUPERSEDE way. In: Lossio-Ventura, J.A., Muñante, D., Alatrista-Salas, H. (eds.) SIMBig 2018. CCIS, vol. 898, pp. 13–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11680-4_3

    Chapter  Google Scholar 

  111. Felfernig, A., Stetinger, M., Falkner, A., Atas, M., Franch, X., Palomares, C.: OpenReq: recommender systems in requirements engineering. In: Proceedings of the International Workshop on Recommender Systems and Social Network Analysis (RS-SNA), pp. 1–4. CEUR 2025 (2017)

    Google Scholar 

  112. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational Method Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41467-1

    Book  Google Scholar 

  113. Franch, X., et al.: A situational approach for the definition and tailoring of a data-driven software evolution method. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 603–618. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_37

    Chapter  Google Scholar 

  114. Dam, H.K., Tran, T., Ghose, A.: Explainable software analytics. In: Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 53–56. ACM Press (2018)

    Google Scholar 

  115. Franch, X., Palomares, C., Gorschek, T.: On the requirements engineer role. Commun. ACM (in press). http://dx.doi.org/10.1145/3418292

Download references

Acknowledgment

This work is partially supported by the GENESIS project, funded by the Spanish Ministerio de Ciencia e Innovación under contract TIN2016-79269-R. The author wants to deeply thank Fabiano Dalpiaz, Silverio Martínez-Fernández and Marc Oriol for their comments and suggestions over a first draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Franch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franch, X. (2021). Data-Driven Requirements Engineering: A Guided Tour. In: Ali, R., Kaindl, H., Maciaszek, L.A. (eds) Evaluation of Novel Approaches to Software Engineering. ENASE 2020. Communications in Computer and Information Science, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-70006-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70006-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70005-8

  • Online ISBN: 978-3-030-70006-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics