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Abstract. Parallel programming is much more complex and difficult
than sequential programming, and it is therefore more challenging to
achieve the same software quality in a parallel context. High-level paral-
lel programming models, if implemented as software frameworks, could
increase productivity and reliability. Important requirements such as ex-
tensibility and adaptability for different platforms are required for such
a framework, and this paper reflects on these requirements and their re-
lation to the software engineering methodologies that could put them in
practice. All these are exemplified on a Java framework — JPLF; this is
a high-level parallel programming approach being based on the model
brought by the PowerLists associated theories, and it respects the anal-
ysed requirements. The design of JPLF is analysed by explaining the
design choices and highlighting the design patterns and design principles
applied.

Keywords: Parallel Programming, Frameworks, Software Engineering,
Separation of Concerns, Design Patterns, Recursive Data Structures

1 Introduction

Nowadays, in order to leverage the full computing power of current processors
and also because the computing demand is increasing more and more, parallel
programming is used in almost all software applications. Parallel programming
requires considerably more skills than sequential programming since it intro-
duces an additional layer of complexity and new types of errors. One way to
master this complexity is to use frameworks and specialized APIs that make
the programmers more productive in writing quality software. Besides perfor-
mance, these should also provide reliability and flexibility that assures support
for various system paradigms.

Since the frameworks for parallel programming are generally built around
models of parallel computation, the analysis of requirements for an efficient
framework has to start from the general requirements of a good model of parallel
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computation. We intend to provide in this paper an analysis of these require-

ments in relation to the software engineering that allow us to put them in prac-

tice. A general architecture is proposed for this kind of frameworks - MEDUGA
(Model-Executors-DataManager-UserInteracter-GranularityBalancer-metrics Analyser).
This design is exemplified on a concrete framework —JPLF: Java Parallel Lists
Framework [29,27]. This paper is an extension of the conference paper [30],

in which the patterns and software development principles used for the JPLF
implementation were analysed.

By being based on the PowerList theory introduced by J. Misra [25], JPLF is
a high-level parallel programming framework that allows building parallel pro-
grams that follow the multi-way divide-and-conquer parallel programming skele-
ton with good execution performances both on shared and distributed memory
architectures.

The provided shared memory execution is based on thread pools; the current
implementation uses a Java ForkJoinPool executor [40], but others could be
used too. For distributed memory systems, we considered MPI (Message Passing
Interface) [39] in order to distribute processing units on computing nodes. So,
JPLF is a multiparadigm framework that supports both multi-threading in a
shared memory context and multi-processing in a distributed memory context,
and it is open for other types of execution systems, too.

Allowing the support of multiple paradigms requires the framework to be

flexible and extensible. In order to achieve these characteristics, the framework
was implemented following object-oriented design principles. More specifically,
we have employed separations of concerns in order to facilitate changing the low-
level storage and the parallel execution environment, and in order to overcome
the challenges brought by the multiparadigm support, we have used different
design patterns, decoupling patterns having a defining role.
Outline: The remaining of the paper is organized as follows. First we analyse the
general requirements for an efficient parallel programming framework in section
2. Section 3 is devoted to a complex analysis of the JPLF framework design and
implementation. Related work is discussed in Section 4. We give the conclusions
and the specification of further work in section 5.

2  Requirements for a multiparadigm parallel
programming framework

In [36] Skillicorn and Talia analyse the usefulness requirements for a model
of parallel computation. This kind of models should address both abstraction
and effectiveness, which are summarized in a set of specific requirements: ab-
stractness, software development methodology, architecture independence, cost
measures, no preferred scale of granularity, efficiently implementable.

In computer programming, a model is seen as an abstract machine providing
certain operations to the programming level above and requiring implementa-
tions for each of these operations on all of the architectures below. It is designed
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to separate software-development concerns from effective execution. We need
models because we need both abstraction to assure easy development, but also
stability to assure reliability. In general, models are valuable if they are theoret-
ically consistent, fit the real world, and have predictive power.

A software framework is considered an integrated collection of components
that collaborate to produce a reusable architecture for a family of related ap-
plications. A software framework provides software with generic functionality
that can be specialized by additional user-written code, and thus providing
application-specific software. It provides a structured way to build and deploy
applications from a particular area or domain, and the use of frameworks has
been shown to be effective in improving software productivity and quality. In
parallel programming they are very important due to the complexity of the par-
allel execution that make parallel programming writing difficult and error prone.
In contrast to libraries, frameworks are characterized by: inversion of control —
the flow of control is not dictated by the user, but by the framework; default
behaviour; extensibility — through concrete software extension points (usually
entitled “hot-spots”); non-modifiable code (usually entitled “frozen-spots”) [34,
20].

In relation to the models of computation, software frameworks come with a
more empirical meaning, as they have the role to put the models into practice.
They come as a further layer in the development process, providing the structure
needed to implement and use a model.

So, in order to build a useful parallel programming framework, we have to
rely on a model of parallel computation and provide the context of a concrete
implementation for it. This means that we should carefully analyze the require-
ments of a model for parallel computation and the challenges imposed by the
need to put them into practice on actual systems.

2.1 Requirements for a model of parallel computation

We will analyse the requirements stated in [36], and based on them we emphasize
what further requirements are implied for the corresponding frameworks.

— FEasy to Understand and Program. A model should be easy to understand in

order to secure a large mass of programmers that could embrace it. If paral-
lel programming models are able to hide the complexities and offer an easy
interface, they have a greater chance of being adopted. Parallel execution is
a very complex process and a model must hide most of the execution details
from programmers in order to allow productivity and reliability. In the same
time it is well known that the most challenging issue, for such a computa-
tional model is to find a good trade-off between abstraction/readability and
performance/efficiency [11].
The corresponding frameworks should provide well defined constructs that
assure easy definition of the computation. Generic code facilitates this very
much, but also creational patterns (e.g. Abstract Factory or Builder) could
provide mechanisms that allow the user to easily define correct and efficient
programs inside the framework.
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— Architecture-Independence. Parallel systems are not only very different and

non-homogeneous, but are also highly modifiable, being in a continuous pro-
cess of improvement. We may notice here the big change brought by the
GPU devices that modified a lot the world of parallel implementators. So,
the models should be independent on this low level of execution, but this rises
big challenges for the parallel programming frameworks based on models.
There are now, many parallel systems that define many computation paradigms,
each having particular characteristics. The most used architecture classes are
shared-memory, and distributed memory systems, together with their hybrid
variants. The hybrid variants may include very important accelerators, as
GPUs and FPGAs, that introduce other computing paradigms.
A very clear separation between the level of specification and definition of
the computation and the execution level should be provided by the frame-
work. The model provides the tasks, and the ‘executors’, that are separately
defined, should have the ability of executing the tasks in an efficient way.
These executors represent a “hot-spot” in the framework, since they should
be specialized for different platforms, and/or improved in time.

— Software Development Methodology. This is needed because rising the level

of abstraction leads to a gap between the semantic structure of the program,
and the detailed structure required for its execution. In order to bridge this
gap a solid semantic foundation on which transformation techniques can be
built is needed. Correctness by construction is very important in the parallel
programming setting, since in this case debugging is a very difficult task.
This requirement is intrinsically related to the abstract machine defined by
the model.
The concrete execution should be provided by the framework, and if the
model provides a good development methodology, this could be used for
the executors definition. They should assure correct execution of the task
generated inside the model for different types of parallel system.

— Guaranteed Performance. Even if it is not expected to extract absolutely
all the performance potential when implementing a model on a particular
architecture, the model should assure the possibility to obtain a good imple-
mentation on each architecture type. If the corresponding abstract machine
associated to the model imposes restrictions about the data access, commu-
nications, or other low level computational aspects, then it doesn’t qualify
as a good general model.

Also, the model doesn’t have to impose certain levels of granularity since the
systems could come with different scales of dependencies on granularity.

A framework built based on a model has to be flexible enough to provide the
possibility to improve and adapt the execution to new conditions brought by
various systems. This requires flexibility and adaptability. The model being
theoretical, could and should emphasize the maximum level of parallelism
for a computation. But this maximum level of parallelism could lead to a
very fine granularity that may not be appropriate for the concrete system.
The adaptation of the task granularity to different system granularity levels
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is very important and the framework should tackle this issue, by providing
a functionality that could inject the desired level of granularity.

Another important issue in achieving performance is related to data manage-
ment. Parallel computation is in many cases related to huge volumes of data
that have to be read, computed and stored. The computation defined inside
the model should be connected to the data, and these operations could have
a huge impact on the final cost of computation. Considering the impact of
data management on computational costs, this has to be reflected in a well
defined framework component, that could be transformed and improved in
time.

Cost Measures. The most important goal in a parallel program design and
construct is increasing the performance. Execution time is the most impor-
tant of the concerns, but there are others such as processor utilization or even
the development costs that are important too. They all describe the cost of
a program, and the model should provide cost measures. At the abstract
level, the model provides measures that are independent on the concrete ex-
ecution level, but these measures should be parameterized well enough, such
that they are able to assess the real costs that could be achieved on real
machines.

Since the best solution is many times obtained through empirical tests (and
not only based on a theoretical analysis inside the model), it would be de-
sirable for the framework to provide functions that automatically gives the
evaluation of some metrics — e.g. number of certain functions calls, number
of threads/processes created, execution time, etc — and correlate them with
some concrete platform system parameters.

By summarizing the previous requirements, we may emphasise the main com-

ponents of the architecture of a good framework for parallel programming;:

Model — the implementation of the model of parallel computation that sat-
isfies the specified requirements;

Ezecutors — a component that treats the execution on different types of
parallel systems;

Data Manager — a data management component that deals with data acqui-
sition and management;

User Interacter — a component that facilitates the easy development of new
programs inside the framework.

Granularity Balancer — a component able to adjust the granularity of the
tasks that should be executed by the executors.

Metrics Analyser — a component that could automatically provide cost mea-
sures of the execution in order to evaluate the performance.

The model should be efficiently connected with the other components: it pro-

vides the necessary information (e.g. executors receive tasks), but also uses the
components functionality when needed (e.g. receive data from Data Manager).
The defined components represent the “hot-spots” of the framework. Figure 1
emphasises the proposed architecture of a framework for parallel programming —
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Fig. 1. MEDUGA - architecture scheme of a framework built based on a model of
parallel computation.

MEDUGA — Model-Executors-DataManager-UserInteracter-GranularityBalancer-
MetricsAnalyser. This architecture could assure a good level of extensibility
(through the component), but also stability (through the model).

2.2 The importance on relying on software engineering
methodologies and patterns

In general, software engineering methodologies proved to be essential in the
development of quality software of any kind. In order to satisfy the analysed
requirements, the development of a framework that is based on a model of par-
allel computation, even more important than in the sequential case, must rely on
appropriate software engineering methodologies, due to the complexity of such
systems.

Parallel programming emphasizes specific parallel programming patterns and
they are mainly related to the parallel programming paradigms that have been
inventoried [23]. The model should provide well defined relations with these pat-
terns, and their possible implementations. Many popular parallel computation
models are defined based on skeletons [3], which structure and simplify the com-
putational process. They are in direct connection to the parallel design patterns,
which offer essential advantages in the development of software processes. They
could provide the necessary flexibility and adaptability much needed in this case.

Besides the parallel programming patterns, general design patterns used in
the common software design and software development methodologies are also
important because the framework should assure correct separation of concerns,
flexibility, adaptability and extensibility.

3 The JPLF Framework

The JPLF framework has been built following the requirements analysed in the
previous section. PowerList and associated theories [25, 17] have been selected as
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a model of computation, and this model was proved to fulfill the general require-
ments for a model of parallel computation in [26]. PowerLists allow an efficient
and correct derivation of programs of divide-and-conquer type; PList extensions
allow multi-way divide-and-conquer computation, but also “embarrassingly par-
allel computation”[12]. Extensions with PowerArrays, resp. PArrays are possible,
in order to move to multidimensional data organisation.

3.1 PowerlList theory as a model of parallel computation

The theory of Powerlists data structures introduced by J. Misra [25] offers an
elegant way for defining divide-and-conquer programs at a high level of abstrac-
tion. This is especially due to the fact that the index notations are not used, and
because it allows reasoning about the algorithm correctness based on a formal
defined algebra.

A PowerlList is a linear data structure with elements of the same type, with
the specific characteristic that the length of a PowerList is always a power of two.
The functions on PowerLists are defined recursively by splitting their arguments
based on two deconstruction operators (tie and zip).

Similar theories such as ParLists and PLists were defined [17], for working
also with lists with non power-of-two lengths, and divide-and-conquer functions
that split the problem in any number of subproblems. They extend the set of
computation skeletons that could be defined using these data structures.

Besides the fact the inside these theories we have a solid software methodol-
ogy that allows proving program correctness, the main advantage and specificity
of the PowerList is the fact that there are two constructors (and correspondingly
two desconstructors) that could be used: two similar Powerlists (with the same
length and type), p and ¢, can be combined into a new, double length, power
list data structure, in two different ways:

— using the operator tie, written p|gq, the result containing elements from p

followed by elements from g,

— using the operator zip, written plq, the result containing elements from p
and ¢, alternatively taken.

To prove the correctness of properties on PowerLists a structural induction
principle is used: this considers a base case (for singletons), and two possible
variants for the inductive step: one based on the tie operator, and the other
based on zip.

Functions are defined based on the same principle. As a PowerlList is either a
singleton (a list with one element), or a combination of two PowerLists, a Pow-
erList function can be defined recursively by cases. For example, the high order
function map, which applies a scalar function to each element of a PowerList is
defined as follows:

map(f, [a]) = [f(a)] (1)
map(f, plq) = map(f, p)| map(f, q)

The classical reduce function could be defined in a similar manner.



8 V. Niculescu et al.

For both map and reduce, alternative definitions based on the zip opera-
tor could also be given. These could be useful if - depending on the memory
allocation, and access — one could be more efficient than the other.

Moreover, the existence of the two decosntruction operators could be essential
for the definition of certain functions. An important example is represented by
the algorithm that computes the Fast Fourier Transform defined by Cooley and
Tukey [4]; this has a very simple PowerList representation, which has been proved
correct in [25]:

) = a -
Fipia) = (P+uxQ)|(P—uxQ)

where P = fft(p), Q = fft(¢) and u = powers(p). The result of the function
powers(p) is the PowerList (w°®, w?,..,w™ 1) where n is the length of p and w is
the (2 x n)th principal root of 1.

The operators + and x used in the fft definition are extension of the binary ad-
dition and multiplication operators on PowerLists. They have simple definitions
that consider as an input two similar PowerLists, and specify that the elements
on the similar positions are combined using the corresponding scalar operator.

The parallelism of the functions is implicitly defined: each application of
a deconstruction operator (zip or tie) implies two independent computations
that may be performed independently in two processes (programs) that could
run in parallel. So, we obtain a tree decomposition, which is specific to divide-
and-conquer programs. The existence of two decomposition operators eases the
definition of different programs, but at the same time may induce some problems
when these high-level programs have to be implemented on concrete parallel
machines.

The PList data structure was introduced in order to develop programs for
the recursive problems which can be divided into any number of subproblems,
numbers that could be different from one level to another [17]. It is a generalisa-
tion of the PowerList data structure and it has also three constructors: one that
creates singletons from simple elements, one based on concatenation of several
lists, and the other based on alternative combining of the lists. The correspond-
ing operators are [.], (n-way |), and (n-way §); for a positive n, the (n-way |)
takes n similar PList and returns their concatenation, and the (n-way f) returns
their interleaving.

In PList algebra, ordered quantifications are needed to express the lists’ con-
struction. The expression

[|i:i€m:pdi]
is a closed form for the application of the n-way operator |, on the PLists p.i,i €T
in order. The range i € m means that the terms of the expression are written
from 0 trough n—1 in the numeric order.

The PList axioms, also define the existence of a unique decomposition of a
PList using constructors operators. Functions over PList are defined using two
arguments. The first argument is a list of arities: PosList, and the second is the
PList argument (if there are more than one PList argument, they all must have
the same length).
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Usually the arity list is formed of the prime factors obtained through the
decomposition of the list length into prime factors. Still, we may combine these
factors, if convenient. The functions could be defined only if the product of the
numbers in the arity list is equal to the PList argument length. If the arity list
is reduced to one element — the PList argument length — the decomposition is
done only once, and we arrive to an ‘embarrassingly parallel computation® type.

We illustrate PList functions’ definitions with a simple example: the reduc-
tion function that computes the reduction of all elements of a PList using an
associative binary operator & :

defined.red(®).l.p = prod.l = length.p
red(®).]).[a] =a 3)
red(®).(xpl).fli:i€x:pi] = (@®i:0<i<z:red®).l.(p.i))

where prod.l computes the product of the elements of list I, length.p is length
of p, [] denotes the empty list, and > denotes cons operator on simple lists. This
function could also be defined using the § operator because the & operator is
associative.

The existence of the two decomposition operators differentiates these theories
from other list theories, and also represents an important advantage in defining
many parallel algorithms.

3.2 JPLF design and implementation

We will present in this section some details about the design and implementation
of the major components of the framework.

Model Implementation The main elements of the model are interconnected,
although they have different responsibilities, such as:

— data structures implementations,

— functions implementations.
Design choice 1. Impose separate definitions for these elements allowing them
to vary independently.

The motivation of this design choice is that separation of concerns enables

independent modifications and extensions of the components by providing alter-
native options for storage or for execution.

PowerList Data Structures The type used when dealing with simple basic
lists is IBasicList. In relation to the PowerList theory, this type is also used as
a unitary super-type of specific types defined inside the theory. The framework
extension with types that match the PList and ParList data structures is also
enabled by this.

Design choice 2. Use the pattern Bridge [10] to decouple the definition of the
special lists’ types from their storage. Storage could be:
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Fig. 2. The class diagram of the classes corresponding to lists implementation [30].

— a classical predefined list container where all the elements of a list are stored,
but this doesn’t necessarily mean that two neighbor elements of the same list
are actually stored into neighbor locations in this storage: some byte distance
could exist between the locations of the two elements;

— a list of sub-storages (containers) that are combined using tie or zip depend-
ing on the list type (Composite storage).

The storage part belongs to the DataManager component of the framework,
since it may vary from one platform to another, and could be extended, too.

The reason for this design decision is to allow the same storage being used
in different ways, but most importantly to avoid the data being copied when a
split operation is applied. This is a very important design decision that influences
dramatically the obtained performance for the PowerList functions execution.

The result of splitting a PowerList is formed by two similar sub-lists but
the initial list storage could remain the same for both sub-lists having only the
storage information updated (in order to avoid element copy). Having a list
(1), the storage information SI(l) is composed of: the reference to the storage
container base, the start index start, the end index end, the increment incr.

From a given list with storage information ST(list) = (base, start, end, incr),
two sub-lists (left_list and right_list) will be created when either tie and zip
deconstruction operators are applied. The two sub-lists have the same storage
container base and correspondent updated values for (start, end, incr).
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Op.|Side |SI

tie |left |base, start, (start+end)/2, incr
right|base, (start+end)/2, end, incr
zip |left |base, start, end-incr, incr*2
right|base, start+incr, end, incrx2

If we have a PList instead of a PowerList the splitting operation could be
defined similarly by updating SI for each new created sub-list. If we split the list
into p sub-lists then the kth (0<k<p) sub-list has size = (end — start)/p and
ST is:

Op.|Sub-List|SI

tie |kth base, start+sizex(k/p),
start+size*((k+1)/p), incr
zip |kth base, start+k*incr,

end-(p-k-1)*incr, incrxk

The operators tie and zip are the two characteristic operations used to split
a list, but they could also be used as constructors. This is reflected into the
constructors definition.

There are two main specializations of the PowerList type: TiePowerList and
ZipPowerList. Polymorphic definitions of the splitting and combining operations
are defined for each of these types, which determine which operator is used. Since
a PowerList could also be seen as a composition of two other PowerLists, two
specializations with similar names: DTiePowerList and DZipPowerList are defined
in order to allow the definition of a PowerList from two sub-lists that don’t share
the same storage. This is particularly important for executions on distributed
memory platforms. The Composite design pattern is used for this.

The corresponding list data structure types are depicted in the class diagram
shown in Figure 2.

PowerList Functions A PowerList function is expressed in our model by spec-
ifying the tie or zip deconstruction operators for splitting the PowerList argu-
ments and by a composing operator in case the result is also a PowerList.
Design choice 3. Use a type driven implementation for PowerList functions:
if an argument’s type is TiePowerList, then the tie operator is used for splitting
that argument, and if an argument’s type is ZipPowerList, the zip operator is
used for it.

This is possible because for the considered PowerList functions, one Pow-
erList argument is always split by using the same operator (and so it preserves
its type — a TiePowerList or a ZipPowerList). In case the result is a PowerList,
the same operator (depending on the concrete type) is also used at each step of
the construction of the result.

PowerList functions may have more than one PowerList argument, each
having a particular type: TiePowerList or ZipPowerList. The PowerList func-
tions don’t need to explicitly specify the deconstruction operators. They are
determined by the arguments’ types: the tie operator is automatically used for
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Fig. 3. The class diagram of classes corresponding to functions on PowerLists and their
execution [30].

TiePowerLists and the zip operator is used in case the type is ZipPowerLists. It
is very important when invoking a specific function, to call it in such a way that
the types of its actual parameters are the appropriate types expected by the spe-
cific splitting operators. The two methods toTiePowerList and toZipPowerList,
provided by the PowerList class, transform a general PowerList into a specific
one.

The result of a PowerList function could be either a singleton or a Pow-
erList. For the functions that return a PowerList, a specialization is defined —
PowerResultFunction — for which the result list type is specified. This is impor-
tant in order to specify the operator used for composing the result.

Design choice 4. In order to support the implementation of the divide-and-
conquer functions over PowerLists, use the Template Method pattern [10].

The divide-and-conquer solving strategy is implemented in the template
method compute of the PowerFunction class. PowerFunction’s compute method code
snippet is presented in Fig. 4.

The primitive methods:

— combine

— basic_case

— create_right_function and create_left_function
are the only ones that need to be implemented in order to define a new PowerList
function.

For the create_right_function and create_left_function functions we should
provide specialized implementations to guarantee that the newly created sub-
functions (left and right) correspond to the function being computed. For the
other two, there are implicit definitions in order to free the user from providing
implementations for all of them. For example, for map we have to provide a def-
inition only for basic_case, whereas only a combine implementation is required
for reduce.

The function test_basic_case implicitly verifies if the PowerList argument
is a singleton, but there is the possibility to override this method and force an
end of the recursion before singleton lists are encountered.
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public Object compute() {
if (test_basic_case())
result = basic_case();
else { split_arg();
PowerFunction<T> left = create_left_function();
PowerFunction<T> right = create_right_function();
Object res_left = left.compute();
Object res_right = right.compute();
result = combine(res_left, res_right); }
return result;

}

Fig. 4. The template method compute for PowerList function computation.

The compute method should be overridden only for functions that do not
follow the classical definition of the divide-and-conquer pattern on PowerLists.

Figure 3 emphasizes the classes used for PowerList functions and some con-
crete implemented functions: Map, Reduce, FFT. The class PowerAssocBinOperator
corresponds to associative binary operators (e.g. +,* etc.) extended to Pow-
erLists. TuplePowerResultFunction has been defined in order to allow the def-
inition of tuple functions, which combine a group of functions that have the
same input lists and a similar structure of computation. Combining the compu-
tations of such kind of functions could lead to important improvements of the
performance. For example, if we need to compute extended PowerList operators
< +,%,—,/ > on the same pair of input arguments, they could be combined
and computed in a single computation stream. This has been used for the FFT
computation case [28].

3.3 Executors

Multithreading Executors The simple sequential execution of a PowerList
function is done simply by invoking the corresponding compute method.

In order to allow further modifications or specializations, the definition of
the parallel execution of a PowerList function is done separately. The executors’
supertype is the IPowerFunctionExecutor interface that covers the responsibility
of executing a PowerList function. This type provides a compute method and also
the methods for setting and getting the function that is going to be executed.
Any function that complies with the defined divide-and-conquer pattern could
be used for such an execution.

Design choice 5. Define separate executor classes that rely on the same
operations as the primitive methods used for the PowerList function definition.

The class FJ_PowerFunctionExecutor relies on the ForkJoinPool Java execu-
tor, which is an implementation of the ExecutorService interface. Figure 5 shows
the implemented classes corresponding to the multithreading executions based
on ForkJoinPool. A FJ PowerFunctionExecutor uses a ForkJoinPool to execute a
FJ_PowerFunctionComputationTask that is created to compute a PowerList func-
tion. The simple definition of the recursive tasks that we choose to execute
in parallel is enabled by this executor: new parallel tasks are created each
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IPowerFunctionExecutor<T>
types

Regurs;veTaska Fiﬁ;{:::ﬁ' +setPowerFunction(PowerFunction<T>):void
kil e Ll - +compute():Object
Hexecutor A
FJ_PowerFunctionComputationTask<T> FJ_PowerFunctionExecutor<T>
execution exacution
#function: PowerFunction<T> #Hexec #function: PowerFunction<T>
e —
+FJ_PowerFunctionComputationTask(PowerFunction<T>) +FJ_PowerFunctionExecutor(ForkJoinPool PowerFunction<T>)
+compute():Object +FJ_PowerFunctionExecutor(PowerFunction<T>)
+setPowerFunction{PowerFunction<T>):void +setPowerFunction{PowerFunction<T>):void
+compute():Object

Fig. 5. The class diagram of classes corresponding to the multithreading executions
based on ForkJoinPool.

time a split operation is done. As the PowerLists functions are built based on
the Template Method pattern, the implementation of the compute method of the
FJ_PowerFunctionComputationTask is done similarly. The same skeleton, is used
in this implementation, too. The code of the compute template method inside
the FJ_PowerFunctionComputationTask is shown in the code snippet of Figure 6.

public Object compute() {
Object result =null;
if (function.test_basic_case()){ result = function.basic_case(); }

else{
function.split_arg();
PowerFunction<T> left_function = function.create_left_function();
PowerFunction<T> right_function = function.create_right_function();
//wrap the functions into recursive tasks
if (recursion_depth == 0){ result = function.compute(); }
else{

FJ_PowerFunctionComputationTask<T> left_function_exec =
new FJ_PowerFunctionComputationTask<T>(left_function, recursion_depth-1);
FJ_PowerFunctionComputationTask<T> right_function_exec =
new FJ_PowerFunctionComputationTask<T>(right_function, recursion_depth-1);
right_function_exec.fork();
Object result_left = left_function_exec.compute();
Object result_right = right_function_exec.join();
result = function.combine(result_left, result_right);
}
}
return result;

}

Fig. 6. The compute method in PowerFunctionComputationTask

In this example, separate execution tasks wrap the two PowerFunctions that
have been created inside the compute method of the PowerFunction class (right
and left). A forked execution is called for the task right_function_exec, while
the calling task is the one computing the left_function_exec task.

In order to define other kinds of executors, we need to define a new class
that implements IPowerFunctionExecutor, and define its compute method based
on the methods defined by the PowerFunction class.
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MPI Execution The ability to use multiple cluster nodes for execution could
be attained by introducing MPI based execution of the functions [27]. This as-
sures the needed scalability for a framework that works with regular data sets
of very large sizes.

The command for launching a MPI execution has, generally the following is:

mpirun -n 20 TestPowerListReduce_MPI

where the -n argument defines the number of MPI processes (20 is just an
example) that are going to be created. It could be easily observed that the
MPI execution is radically different from the multithreading execution: each
process executes the same Java code and the differentiation is done through
the process_rank and the number_of_processes variables that are used in the
implementing code.

The advantage brought by list splitting and combining without element mov-
ing (just changing the storage information SI), which is possible for the execution
on shared memory systems, is no longer possible for the distributed memory exe-
cution paradigm. On a distributed memory system, based on an MPI execution,
the list splitting and combining costs could not be kept so small because data
communication between processes (sometimes on different machines) is needed.
Since the cost for data communication is much higher than the simple computa-
tion costs, we had to analyze very carefully when this communication could be
avoided.

During the PowerList functions computation when we apply the definition of
the function on non-singleton input lists, each input list is split into two new lists.
In order to distribute the work, we need to transfer one part of the split data to
another process. Similarly, the combining stage could also need communication,
since for combining stages, we need to apply operations on the corresponding
results of the two recursive calls.

For identifying the cases when the data communication could be avoided, the
phases of PowerList function computation were analyzed in details:

1. Descending/splitting phase that includes the operations for splitting the list
arguments and the additional operations, if they exist.

2. Leaf phase that is formed only by the operations executed on singletons.

3. Ascending/combining phase that includes the operations for combining the
list arguments and the additional operations, if they exist.

The complexity of each of these stages is different for particular functions.

For example, for map, reduce or even for fft, the descending phase does not
include any additional operations. It has only the role of distributing the input
data to the processing elements. The input data is not transformed during this
process.

There are very few functions where the input is transformed during the de-
scending phase. For some of these cases it is possible to apply some function
transformation — as tupling — in order to reduce the additional computations.
This had been investigated in [28].
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IPowerFunctionExecutor<T>

setPowerFunction{PowerFunction<T=):wvoid
compute{):Object

| MPI_PowerFunctionExecuto rfl'>|

FJ_PuwerFunctlunExacutor-:T>

.‘...D|I_MPI_CTDperatInns<T>|

MPI_CTOperations<T>| #et

[MPI_PowerFunctionCT<T>|
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[MPI_PowerResultFunctionCT<T>|
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[MPI_PowerCT_split<T>|
| MPI_PowerResuItCT_cnmpose<T>|

[MPI_PowerCT_compose<T>|

Fig. 7. The classes used for different types of execution of a PowerList function [30].

Similarly, we may analyze the functions for which the combining phase im-
plies only data composition (as map) or also some additional operations (as
reduce).

Through the combination of these situations we obtained the following classes
of functions:

1. splitting = data_distribution
The class of functions for which the splitting phase needs only data distri-
bution.
Examples: map, reduce, [ft

2. splitting # data_distribution
The class of functions for which the splitting phase needs also additional
computation besides the data distribution.
Example: f(ptg) = f(p+ @)if(p —q)

3. combining = data_composition
The class of functions for which the combining phase needs only the data
composition based on the construction operator (tie or zip) being applied to
the results obtained in the leaves.
Example: map

4. combining # data_composition
The class of functions for which the combining phase needs specific compu-
tation used in order to obtain the final result.
Examples: reduce, fft.
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Fig. 8. Implementation details of some of the classes involved in the definition of MPI
execution [30].

One direct solution to treat these function classes as efficiently as possible
would be to define distinct types for each of them. But the challenge was that
these classes are not disjunctive. The solution was to split the function execution
into sections, instead of defining different types of functions.

Design choice 6. Decompose the execution of the PowerList function into
phases: reading, splitting, leaf, combining, and writing.

Apply the Template method pattern in order to allow the specified phases to vary
independently.

Apply the Decorator pattern [10] in order to add specific corresponding cases.

The Figure 7 emphasizes the operations’ types corresponding to the different
phases. For MPI execution, we associated a different computational task (CT) for
each phase. The computational tasks are defined as decorators, they are specific
to each phase, and they are different for functions that return PowerLists by
those that return simple types (PowerResultFunction vs. PowerFunction):

— MPI_PowerCT_split,

— MPI_PowerCT_compose, resp. MPI_PowerResultCT_compose,
— MPI_PowerCT_read,

— MPI_PowerResultCT_write.

Some details about the implementations of these classes are presented in
Figure 8. The class MPI_CTOperations provides a compute template method and
empty implementations for the different step operations: read, split, compose,
... (details are given in Fig. 9).
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// compute method of MPI_CTOperations class
public Object compute(){

Object result;

read();

split();

result = leaf();

result = compose();

write();

return result;

Fig. 9. The template method compute for MPI execution.

The 1eaf operation encapsulates the effective computation that is performed
in each process. It can be based on multithreading and this is why it could use
FJ_PowerFunctionExecutor (the association between MPI_PowerFunctionCT and
FJ_PowerFunctionExecutor). Hence, an MPI execution is a implicitly a combi-
nation of MPI and multithreading execution.

The compose operations in MPI_PowerCT_compose and MPI_PowerResultCT_compose
are defined based on the combine operation of the wrapped PowerList function.

The input/output data for domain decomposition of parallel applications are
in general very large, and so these are usually stored into files. This introduces
other new phases in function computation if reading and writing are added as
additional phases (case 1), or if they are combined with splitting (resp. combining
phases; in this case they introduce new variations of the function computation
phases (case 2).

If the data are taken from a file, then:
case 1: a reading is done by the process 0, followed by an implementation of

the decomposition phase based on MPI communications;
case 2: concurrent file reads of the appropriate data are done by each process.

The possibility of having concurrent read of the input data is given by the
fact each process needs to read data from different positions on the input file,
and also because the data depends on known parameters: the type of the input
data (TiePowerList or ZipPowerList), the total number of elements, the number
of processes, the rank of each process, and the data element size (expressed in
bytes).

The difficulty raised from the fact that all the framework’s classes are generic
and also almost all MPI Java implementations need simple data types to be
used in communication operations. The chosen solution was to use byte array
transformations of the data through serialization.

Design choice 7. Use the Broker design pattern in order to define specialized

classes for reading and writing data (FileReaderiWriter) and for serializing/de-

serializing the data (ByteSerialization).

These specialised classes belong to DataManger component of the framework.
When the decomposition is based on the tie operator, reading a file is very

simple and direct: each process receives a filePointer that depends on its rank

from where it starts reading the same number of data elements.
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When the decomposition is based on the zip operator, file reading requires a
little bit more complex operations: each process receives a starting filePointer
and a number of data elements that should be read, but for each next reading,
another seek operation should be done. The starting filePointer is based on
bit reverse (to the right) operation applied on the process number.

For example, for a list equal to [1,2,3,4,5,6,7,8] a zip decomposition on 4
processes leads to the following distribution: [ [1,5], [3,7], [2,6], [4,8] ].

In order to fuse the combining phase together with writing, we applied a
similar strategy. The conditions that allow concurrent writing are: the output
file to be already created and each process writes values on different positions,
these positions are computed based on the process rank, the operator type, the
total number of elements, the number of processes, and the data element size.

Using this MPI extension of the framework, we don’t need to define spe-
cific MPI function for each PowerList function. We just define an executor by
adding the needed decorators for each specific function: a read operation, or a
split operation, and a compose operation or a write operation, etc. The order in
which they are added is not important. In the same time the operations: read,
write, compose, etc. are based on the primitives operations defined for each Pow-
erList function (which are used in the compute template method). Also, they are
dependent on the total number of processes and the rank of each process.

To give better insights of the MPI execution we will present the case of the
Reduce function (section 3.1). The following test case considers a reduction on a
list of matrices using addition. The code snippet in Figure 10 emphasizes what
is needed for the MPI execution of the Reduce function.

ArrayList<Matrix> base = new ArrayList<Matrix>(n);
AsocBinOperator<Matrix> op = new SumOperator<Matrix>();
TiePowerList<Matrix> pow_list = new TiePowerList<Matrix>(base,0, n-1, 1);
PowerFunction<Matrix> mf = new Power.Functions.Reduce(op, pow_list);
int [] sizes = new int[1]; sizes[0] = n;
int [] elem_sizes = new int[1];
elem_sizes[0] = ByteSerialization.byte_serialization_len(new Matrix(0));
String [] files = new String[i];
files[0] = "date_matrix.in";
MPI_CTOperations<Matrix> exec =
new MPI_PowerCT_compose<Matrix>(
new MPI_PowerCT_read<Matrix>(
new MPI_PowerFunctionCT<Matrix>(mf, ForkJoinPool.commonPool()),
files, sizes, elem_sizes) );
Object result = exec.compute();

Fig. 10. The MPI execution of the Reduce function

3.4 Granularity Balancer

In an ideal case, the execution of parallel programs defined based on PowerLists
implies the decomposition of the input data using the tie or zip operator and
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each application of tie and zip creates two new processes running in parallel, such
that for each element of the input list will be a corresponding parallel process.

If we consider the FJ_PowerFunctionExecutor, this executor implicitly creates
a new task that handles the right_part_function. So, the number of created tasks
grows linearly with the data size. This leads to a logarithmic time-complexity
that depends on the loglen of the input list.

Adopting this fine granularity of creating a parallel process per element may

hinder the performance of the whole program. One possible improvement would
be to bound the number of parallel tasks/processes, i.e. to specify a certain level
until which a new parallel task is created:
Design choice 8. Introduce an argument — recursion_depth — for the Ezecutor
constructors; the default value of this argument is equal to the logarithmic length
of the input list (loglen 1) and the associated precondition specifies that its value
should be less or equal to loglen I. When a new recursive parallel task is created
this new task will receive a recursion_depth decremented with 1. The recursion
stops when this recursion_depth reaches zero.

This solution will lead to a parallel recursive decomposition until a certain
level and then each task will simply execute the corresponding PowerList func-
tion sequentially.

In the same time, there are situations when for a sequential computation
of the requested problem, a non recursive variant is more efficient than the
recursive one. For example, for map, an efficient sequential execution will just
iterate through the values of the input list and apply the argument function.
The equivalent recursive variant (Eq. 1) is not so efficient since recursion comes
with additional costs.

In this case we have to transform the input list by performing a data distri-
bution. A list of length n is transformed into a list of p sub-lists, each having
n/p elements. If the sub-lists have the type BasicList then the corresponding
BasicListFunction is called. In the framework, this responsibility is solved by
the following design decision:

Design choice 9. Define a class Transformer that has the following responsi-
bilities:

— transforming a list of atomic elements into a list of sub-lists and,

— transforming a list of sub-lists into a list of atomic elements(flat operation).
How the sub-lists are computed depends on the two operators tie and zip, and
the transformation should preserve the same storage of the elements.

For the Transformer class implementation the Singleton pattern[10] should be
used.

The transformation described above does not imply any element copy and it
preserves the same storage container for the list. Every new list created has p
BasicList elements with the same storage. On creation, the storage information
ST is initialized for each new sub-list according to which decomposition operator
was used (Zie or zip) to create this new sub-list. The time-complexity associated
to this operation is O(p). The Transformer class has the following important
functions:
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— toTieDepthList and toZipDepthList,
— toTieFlatList and toZipFlatList.

The execution model for these lists of sub-lists is very similar and only differs
for the basic case. If an element of a singleton list, that corresponds to the basic
case is a sub-list (i.e. has the IBasicList type), a simple sequential execution
of the function on that sub-list is called. Sequential execution of functions on
sub-lists is implicitly based on recursion which is not very efficient in Java. If
an equivalent function defined over IBasicList (based on iterations) could be
defined, then this should be used instead.

3.5 User Interactor

In order to define a new program/function the user need only to specialize:
combine; basic_case; create_right_function and create_left_function; as it was
described in section 3.2. For the first two functions there are implicit definitions,
such that they should be overwritten, only when combine is not a simple con-
catenation, and when basic_case is different from identity function.

As specified before, PowerList functions don’t have to explicitly specify the
deconstruction operators since they are determined by the arguments’ types;
this simplify very very much the definition of new functions. For the parallel
execution, different executor types could be used and the user have to choose
one depending on the available platform.

In Fig. 11 we present the steps needed to execute the function map, which
applies square on a list of matrices; the sequential execution based on an itera-
tive list traversal is directed by the use of BasicList type, recursive sequential
execution is directed by TiePowerList (ZipPowerLis also could be used), and for
parallel multithreading execution an executor based on Java ForkJoinPool is cre-
ated, and the function is executed through it. As it can be noticed from the code
represented in Fig. 10, for an MPI execution of a PowerList function we need
only to specify the ‘decorators’, and the files’ characteristics (if it is the case).
The general form of a Powerlist function has a list of PowerLists arguments.
The reading should be possible for any number of PowerLists arguments. This is
why we have arrays for the files’ names and lists” and elements’ sizes. For reduce
we have only one input list.

Design choice 10. Apply the Factory Method pattern [10], in order to simplify
the specifications/creation of the most common functions.

The most common functions, as map, reduce, or scan are provided since they
have many applications, and many other functions could be obtained through
their composition.

3.6 Metrics Analyser

For testing we have used external scripts (under Linux OS) that allow us to
executes several times one program with different parameters: number of MPI
processes, number of threads of each process, recursion granularity, and depth of
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int limit =1<<5 ; // size of the list
// function to be applied on each element
Function f = new SquareFunctionFieldElem<Matrix>(new Matrix(1));
ArrayList<Matrix> base = new ArrayList<Matrix>(limit); //storage of the list
// populate the list
I Co 001
//sequential execution
//define the list for sequential computation
BasicList<Matrix> list = new BasicList<Matrix>(base, 0, limit-1);
//sequential function definition
BasicListResultFunction<Matrix> bmf = new Basic.Functions.Map<Matrix>(f, list);
//iterative sequential computation
Object result = bmf.compute();
//mulithreading execution
//define the list for parallel computation
TiePowerList<Matrix> pow_list = new TiePowerList<Matrix>(base,0, limit-1);
//parallel function definition
PowerResultFunction<Matrix> mf =
new Power.Functions.Map<Matrix>(f, pow_list);
//recursive sequential computation
Object result = mf.compute();
//executor definition
FJ_PowerFunctionExecutor<Matrix> executor = new FJ_PowerFunctionExecutor<Matrix>(mf);
// parallel multithreading computation
result = executor.compute();

Fig. 11. Sequential and multithreading execution of Map function — squaring applied
on a list of matrices

the data list (as explained in section 3.4). The performance results were written
into files. The parameterization has been done through command line arguments,
and so, we may consider that we have used a very simple form of dependency
injection.

3.7 Extensions

For PList, the functions and their possible multiparadigm executors are defined
in a similar way to those for PowerList. PList is a generalization of PowerList
allowing the splitting and the composition to be done into/from more than two
sub-lists. So, instead of having the two functions: create_right_function and
create_left_function, we need to have an array of (sub)functions. Still, the
same principles and patterns are applied as in the PowerList case.

PowerArrays and PArrays are defined similarly to the unidimensional coun-
terparts, and so are their corresponding functions, too. Including them into the
framework could be done based on the same principles as those followed for
PLists.

4 Related work

Algorithmic skeletons are considered an important approach in defining high
level parallel models [3,32]. PowerLists and their associated theory could be
used as a foundation for a domain decomposition divide-and-conquer skeleton
based approach.
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There are numerous algorithmic skeleton programming approaches. Most
often, they are implemented as libraries for a host language. This languages
include functional languages such a Haskell [22] with skeletons implemented
using its GpH extension [13]. Multi-paradigm programming languages such as
OCaml [24] are also considered: OCamlP3L [5] and its successor Sklml offer a
set of a few data and task parallel skeletons and parmap [7]. Although OCaml is
a functional, imperative and object oriented language, only the functional and
imperative paradigms are used in these libraries.

Object-oriented programming languages such as C++, Java, or even Python
are host languages for high-level parallel programming approaches. Very often
object-oriented features are used in a very functional programming style. Basi-
cally classes for data structures are used in the abstract data-type style, with
a type and its operations, sometimes only non-mutable. This is the approach
taken by the PySke library for Python [33] that relies on a rewriting approach
for optimization [21]. The patterns used for the design of JFPL, are also mostly
absent from many C++ skeleton libraries such as Quaff [8] or OSL [18]. These
libraries focus on the template feature of C++ to enable optimization at compile
time though template meta-programming [38]. Still, there are also very complex
C++ skeleton based frameworks — e.g. FastFlow [6] — that are built using a
layered architecture and which target networked multi-cores possibly equipped
with GPUs systems.

Java is one of the programming languages chosen often for implementing
structured parallel programming environments that use skeletons as their foun-
dation. The first skeleton based programming environment developed in Java,
which exploits macro-data flow implementation techniques, is the RMI-based
Lithium [1]. Calcium (based on ProActive, a Grid middleware) [2] and Skandium
[19] (multi-core oriented) are two others Java skeleton frameworks. Compared
with the aforementioned frameworks, JPLF could be used on both shared and
distributed memory platforms.

Unrelated to architectural concerns, but related to the implementation of
JFPL is that Java has been considered as a supported language by some MPI
implementations which offer Java bindings. Such implementations are OpenMPI
[37] and Intel MPT [41]. There are also 100% pure Java implementations of MPI
such as MPJ Express [35,14]. Although there are some syntactic differences
between them, all of these implementations are suitable for MPI execution. We
have also used Intel Java MPI and MPJ Express and the obtained results were
similar.

There are many works that emphasize the need of using well defined soft-
ware engineering concepts and methodologies for increasing the reliability and
productivity in parallel software development [15,16,31,23]. They refer either
methodologies as I. Foster in [9], or patterns as the high impact book “A Pattern
Language for Parallel Programming” [23], or both. Structured approaches are
necessary since the technologies are various, there are many execution platforms,
and also, the parallel software development is difficult.
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5 Conclusions and further work

Starting from an analysis of the requirements for a reliable parallel programming
framework, we tried to identify the main components of such a framework and
we arrived to an architecture that is based on a model of parallel computation,
but contains also well defined “hot-spot” as components — MEDUGA (Model-
Executors-DataManager-UserInteractor-GranularityBalancer-metricsAnalyser).

We emphasized also how this was applied on the development of a concrete
framework - JPLF.

The JPLF framework has been architectured using design patterns. Based on
the proposed architecture, new concrete problems can be easily implemented and
resolved in parallel. Also, the framework could be easily extended with additional
data structures (such as ParList or PowerArray [17]).

The most important benefit of the framework’s internal architecture is that
the parallel execution is controlled independently of the PowerList function defi-
nition. Primitive operations are the foundation for the executors’ definitions, this
allowing multiple execution variants for the same PowerList program. For ex-
ample, sequential execution, MPI execution, multithreading using ForkJoinPool
execution or some other execution model can be easily implemented. If we have
a definition of a PowerList function we may use it for multithreading or MPI
execution without any other specific adaptation of that particular function.

For the MPI computation model it was mandatory to properly manage the
computation steps of a PowerList function: descend, leaf, and ascend. These
computation steps were defined within a Decorator pattern based approach.

Many frameworks are oriented either on shared memory or on distributed
memory platforms. The possibility to use the same base of computation and as-
sociate then the execution variants depending on the concrete execution systems
brings important advantages.

The separation of concerns principle has been intensively used. This facili-
tated the data-structures’ behavior to be separated from their storage, and to
ensure the separation of the definition of functions from their execution.

As a further work we propose to enhance the metrics analyser component
of the framework by allowing the injection of some metrics evaluation into the
computation. Through this, the computation would be to be augmented with
the required metrics computation.

Several executions have to be done, overhead regions identification could im-
prove the performance very much, resource utilization evaluation (e.g. number
of threads that are created/used) may improve the efficiency, etc.

As we presented in section 4 there are many parallel programming libraries
(that could be assimilated to frameworks), which are based on skeletons, and
which provide implementations of the considered parallel skeletons on different
systems. It would be interesting to investigate the measure in which they have
been built following software engineering methodologies that assure the expected
levels of software quality. How this aspects were affected performance but also
maintainability is another interesting subject of study.
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