Skip to main content

Energy-Aware Pattern Framework: The Energy-Efficiency Challenge for Embedded Systems from a Software Design Perspective

  • Conference paper
  • First Online:
Evaluation of Novel Approaches to Software Engineering (ENASE 2020)

Abstract

Driven by the success of Internet of Things, the number of embedded systems is constantly increasing. Reducing power consumption and improving energy efficiency are among the key challenges for battery-powered embedded systems. Additionally, threats like climate change clearly illustrate the need for systems with low resource usages. Due to the impact of software applications on the system’s power consumption, it is important to optimize the software design even in early development phases. The important role of the software layer is often overlooked because energy consumption is commonly associated with the hardware layer. As a result, existing research mainly focuses on energy optimization at the hardware level, while only limited research has been published on energy optimization at the software design level. This work presents a novel approach to propose an energy-aware software design pattern framework description, which takes power consumption and time behavior into account. We evaluate the expressiveness of the framework by defining design patterns, which use elaborated power-saving strategies for various hardware components to reduce the overall energy consumption of an embedded system. Furthermore, we introduce a dimensionless numerical efficiency factor to make energy savings quantifiable and a comparison for design patterns applied in various use cases possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd El-Mawla, N., Badawy, M., Arafat, H.: Iot for the failure of climate-change mitigation and adaptation and IIot as a future solution. World J. Environ. Eng. 6(1), 7–16 (2019). https://doi.org/10.12691/wjee-6-1-2

    Article  Google Scholar 

  2. Abdulsalam, S., Lakomski, D., Gu, Q., Jin, T., Zong, Z.: Program energy efficiency: The impact of language, compiler and implementation choices. In: International Green Computing Conference (IGCC), pp. 1–6. IEEE, Piscataway (2014)

    Google Scholar 

  3. Albers, S., Antoniadis, A.: Race to idle. ACM Trans. Algorithms 10(2), 1–31 (2014). https://doi.org/10.1145/2556953

    Article  MATH  Google Scholar 

  4. Armoush, A.: Design patterns for safety-critical embedded systems. Ph.D. thesis, Aachen (2010). http://publications.rwth-aachen.de/record/51773

  5. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: On testing embedded software. In: Advances in Computers, vol. 101, pp. 121–153. Elsevier (2016)

    Google Scholar 

  6. Bunse, C., Höpfner, H.: Resource substitution with components - optimizing energy consumption. In: ICSOFT - Proceedings of the 3rd International Conference on Software and Data Technologies, Volume SE/MUSE/GSDCA, Porto, Portugal, 5–8 July, pp. 28–35. INSTICC Press (2008)

    Google Scholar 

  7. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. The Addison-Wesley Object Technology Series. Addison-Wesley, Boston, London (2003)

    Google Scholar 

  8. Douglass, B.P.: Design Patterns For Embedded Systems in C: An Embedded Software Engineering Toolkit. Newnes/Elsevier, Oxford and Burlington (2011)

    Google Scholar 

  9. EventHelix.com Inc.: High speed serial port design pattern (2019). http://www.eventhelix.com/RealtimeMantra/PatternCatalog/high_speed_serial_port.htm. Accessed 03 Aug 2020

  10. Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Investigating the effect of design patterns on energy consumption. J. Softw. Evol. Process 29(2), e1851 (2017). https://doi.org/10.1002/smr.1851

    Article  Google Scholar 

  11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Bosto (1994)

    MATH  Google Scholar 

  12. Grunwald, A., Schaarschmidt, M., Westerkamp, C.: Lorawan in a rural context: Use cases and opportunities for agricultural businesses. In: Mobile Communication - Technologies and Applications; 24. ITG-Symposium, pp. 134–139. VDE-Verl. GmbH, Berlin (2019)

    Google Scholar 

  13. Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40, 1–21 (2013)

    Article  Google Scholar 

  14. Jiang, H., Marek-Sadowska, M., Nassif, S.R.: Benefits and costs of power-gating technique. In: International Conference on Computer Design. pp. 559–566. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  15. Kim, N.S., et al.: Leakage current: Moore’s law meets static power. Computer 36(12), 68–75 (2003). https://doi.org/10.1109/MC.2003.1250885

    Article  Google Scholar 

  16. Landau, H.J.: Sampling, data transmission, and the Nyquist rate. Proc. IEEE 55(10), 1701–1706 (1967). https://doi.org/10.1109/PROC.1967.5962

    Article  Google Scholar 

  17. Lim, C., Ahn, H.T., Kim, J.T.: Predictive dvs scheduling for low-power real-time operating system. In: 2007 International Conference on Convergence Information Technology, pp. 1918–1921. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  18. Litke, A., Zotos, K., Chatzigeorgiou, A., Stephanides, G.: Energy consumption analysis of design patterns. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 1(11), 1663–1667 (2007)

    Google Scholar 

  19. Maleki, S., Fu, C., Banotra, A., Zong, Z.: Understanding the impact of object oriented programming and design patterns on energy efficiency. In: 8th International Green and Sustainable Computing Conference (IGSC), pp. 1–6. IEEE (2017)

    Google Scholar 

  20. Miśkowicz, M.: Event-Based Control and Signal Processing. Embedded Systems. CRC Press, Boca Raton (2016)

    Google Scholar 

  21. Noureddine, A., Rajan, A.: Optimising energy consumption of design patterns. In: Proceedings of the 37th International Conference on Software Engineering, ICSE 2015, vol. 2, pp. 623–626. IEEE Press, Piscataway (2015)

    Google Scholar 

  22. NXP Semiconductors: An11783 - clrc663 pluslow power card detection (2017). https://www.nxp.com/docs/en/application-note/AN11783.pdf

  23. Object Management Group: Unified Modeling Language, Version 2.5.1. OMG Document Number formal/17-12-05 (2017). https://www.omg.org/spec/UML/2.5.1/

  24. Oshana, R., Kraeling, M.: Software Engineering for Embedded Systems: Methods, Practical Techniques, And Applications. Newnes/Elsevier, Waltham (2013)

    Google Scholar 

  25. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about software energy consumption? IEEE Softw. 33(3), 83–89 (2016)

    Article  Google Scholar 

  26. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hardware/Software Interface. The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier/Morgan Kaufmann, Amsterdam and Boston (2014)

    Google Scholar 

  27. Pering, T., Burd, T., Brodersen, R.: The simulation and evaluation of dynamic voltage scaling algorithms. In: Chandrakasan, A., Kiaei, S. (eds.) Proceedings. pp. 76–81. ACM Order Dept, NY (1998). https://doi.org/10.1145/280756.280790

  28. Procaccianti, G., Lago, P., Bevini, S.: A systematic literature review on energy efficiency in cloud software architectures. Sustain. Comput. (SUSCOM) 7(9), 2–10 (2015). https://doi.org/10.1016/j.suscom.2014.11.004

    Article  Google Scholar 

  29. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of things patterns for devices. In: 2017 Ninth international Conferences on Pervasive Patterns and Applications (PATTERNS), pp. 117–126 (2017)

    Google Scholar 

  30. Reinfurt, L., Breitenbücher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of things patterns for devices: Powering, operating, and sensing. Int. J. Adv. Internet Technol. 10, 106–123 (2017)

    Google Scholar 

  31. Rossi, D., Loi, I., Pullini, A., Benini, L.: Ultra-low-power digital architectures for the internet of things. In: Alioto, M. (ed.) Enabling the Internet of Things, pp. 69–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51482-6_3

    Chapter  Google Scholar 

  32. Schaarschmidt, M., Uelschen, M., Pulvermüller, E., Westerkamp, C.: Framework of software design patterns for energy-aware embedded systems. In: Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering, vol. 1: ENASE. pp. 62–73. INSTICC, SciTePress (2020)

    Google Scholar 

  33. Shu, T., Xia, M., Chen, J., Silva, C.D.: An energy efficient adaptive sampling algorithm in a sensor network for automated water quality monitoring. Sensors 17(11), 2551 (2017). https://doi.org/10.3390/s17112551

    Article  Google Scholar 

  34. Svennebring, J., Logan, J., Engblom, J., Strömblad, P.: Embedded multicore: An introduction (2009). https://www.nxp.com/files-static/32bit/doc/ref_manual/EMBMCRM.pdf

  35. Tan, T.K., Raghunathan, A., Jha, N.K.: Software architectural transformations: a new approach to low energy embedded software. In: Design, Automation, and Test in Europe Conference and Exhibition. pp. 1046–1051. IEEE Computer Society, Los Alamitos (2003). https://doi.org/10.1109/DATE.2003.1253742

  36. Tobola, A., et al.: Sampling rate impact on energy consumption of biomedical signal processing systems. In: IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6. IEEE (2015)

    Google Scholar 

  37. Uelschen, M., Schaarschmidt, M., Fuhrmann, C., Westerkamp, C.: Powermonitor: design pattern for modelling energy-aware embedded systems. In: Proceedings of the International Conference on Embedded Software Companion, EMSOFT 2019, ACM, New York (2019). https://doi.org/10.1145/3349568.3351551

  38. Urard, P., Vučinić, M.: IoT nodes: system-level View. In: Alioto, M. (ed.) Enabling the Internet of Things, pp. 47–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51482-6_2

    Chapter  Google Scholar 

  39. Yu, K., Han, D., Youn, C., Hwang, S., Lee, J.: Power-aware task scheduling for big.LITTLE mobile processor. In: International SoC Design Conference (ISOCC), 2013, pp. 208–212. IEEE (2013)

    Google Scholar 

  40. Zurawski, R.: Embedded Systems Handbook: Networked Embedded. Network Embedded Systems, Systems. CRC Press, Boston (2017)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Schaarschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaarschmidt, M., Uelschen, M., Pulvermüller, E., Westerkamp, C. (2021). Energy-Aware Pattern Framework: The Energy-Efficiency Challenge for Embedded Systems from a Software Design Perspective. In: Ali, R., Kaindl, H., Maciaszek, L.A. (eds) Evaluation of Novel Approaches to Software Engineering. ENASE 2020. Communications in Computer and Information Science, vol 1375. Springer, Cham. https://doi.org/10.1007/978-3-030-70006-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70006-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70005-8

  • Online ISBN: 978-3-030-70006-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics