Skip to main content

Modelling 4-Dimensional Tonal Pitch Spaces with Hopf Fibration

  • Conference paper
  • First Online:
Perception, Representations, Image, Sound, Music (CMMR 2019)

Abstract

The question of how to arrange harmonically related pitches in space is a historical research topic of computational musicology. The primitive of note arrangement is linear in 1-D, in which ordered ascending pitches in one direction correspond to increasing frequencies. Euler represented harmonic relationships between notes with a mathematical lattice named Tonnetz, which extends the 1-D arrangement into 2-D space by reflecting consonances. Since then, mathematicians, musicians, and psychologists have studied this topic for hundreds of years. Recently, pitch-space modelling has expanded to mapping musical notes into higher-dimensional spaces. This paper aims to investigate existing tonal pitch space models, and to explore a new approach of building a pitch hyperspace by using the Hopf fibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allenby, R., Rings, Fields and Groups: An Introduction to Abstract Algebra. Butterworth-Heinemann, Oxford (1991)

    Google Scholar 

  2. Amiot, E.: The Torii of phases. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39357-0_1

    Chapter  MATH  Google Scholar 

  3. Baroin, G.: The planet-4D model: an original hypersymmetric music space based on graph theory. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 326–329. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21590-2_25

    Chapter  MATH  Google Scholar 

  4. Cohn, R.: Introduction to Neo-Riemannian theory: a survey and a historical perspective. J. Music Theory 42(2), 167–180 (1998)

    Article  Google Scholar 

  5. Euler, L.: De Harmoniae Veris Principiis per Speculum Musicum Repraesentatis. In: Novi commentarii academiae scientiarum Petropolitanae, St. Petersburg, pp. 330–353 (1774)

    Google Scholar 

  6. Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Proceedings of Mathematics and Computation in Music - Third International Conference, MCM 2011, Paris, France, pp. 69–83 (2011). https://doi.org/10.1007/978-3-642-21590-2_6

  7. Hopf, H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Mathematische Annalen 104(1), 637–665 (1931). https://doi.org/10.1007/BF01457962

  8. Hu, H., Gerhard, D.: WebHexIso: a customizable web-based hexagonal isomorphic musical keyboard interface. In: Proceedings of the 42th International Computer Music Conference, Utrecht, Netherlands, pp. 294–297 (2016)

    Google Scholar 

  9. Hu, H., Park, B., Gerhard, D.: Mapping tone helixes to cylindrical lattices using Chiral Angles. In: Proceedings of the 12th International Sound and Music Computing Conference, Maynooth, Ireland, pp. 447–454 (2015)

    Google Scholar 

  10. Klapuri, A., Davy, M.: Signal Processing Methods for Music Transcription. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-32845-9

    Book  Google Scholar 

  11. Krumhansl, C.L.: Perceptual structures for tonal music. Music Percept. 1, 28–62 (1983)

    Article  Google Scholar 

  12. Kusner, R.B., Sullivan, J.M.: On distortion and thickness of knots. In: Whittington, S.G., De Sumners, W., Lodge, T. (eds.) Topology and Geometry in Polymer Science (IMA), vol. 103, pp. 67–78. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1712-1_7

    Chapter  Google Scholar 

  13. Lerdahl, F.: Tonal Pitch Space. Oxford University Press, Oxford (2001)

    Google Scholar 

  14. Lyons, D.W.: An elementary introduction to the Hopf fibration. Math. Mag. 76(2), 87–98 (2003). http://www.jstor.org/stable/3219300

  15. Milne, A., Sethares, W., Plamondon, J.: Tuning continua and keyboard layouts. J. Math. Music 2, 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  16. Monera, M.G., Monterde, J.: Building a Torus with Villarceau sections. J. Geom. Graph. 15(1), 93–99 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Morris, R.D., Rahn, J.: Basic Atonal Theory. Longman, New York (1980). Music Theory Spectrum 4(1), 138–154 (1982). https://doi.org/10.2307/746016

  18. Murasugi, K.: Knot Theory and Its Applications. Birkhäuser, Boston (2008). https://doi.org/10.1007/978-0-8176-4719-3

    Book  MATH  Google Scholar 

  19. Park, B., Gerhard, D.: Discrete isomorphic completeness and a unified isomorphic layout format. In: Proceedings of the Sound and Music Computing Conference. Stockholm, Sweden (2013)

    Google Scholar 

  20. Piston, W., DeVoto, M.: Harmony. W. W. Norton & Company, New York (1987)

    Google Scholar 

  21. Riemann, H.: Ideen zu einer â Lehre von den Tonvorstellungen, â Jahrbuch der Bibliothek. Peters, pp. 21–22 (1914–1915)

    Google Scholar 

  22. Shepard, R.N.: Geometrical approximations to the structure of musical pitch. Psychol. Rev. 89(4), 3005 (1982)

    Article  Google Scholar 

  23. Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006). https://doi.org/10.1126/science.1126287. https://science.sciencemag.org/content/313/5783/72

  24. Tymoczko, D.: Three conceptions of musical distance. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009. CCIS, vol. 38, pp. 258–272. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02394-1_24

    Chapter  Google Scholar 

  25. Wikipedia contributors: Villarceau circles – Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Villarceau_circles&oldid=875134100 (2018). Accessed 10 July 2019

  26. Wikipedia contributors: Neo-Riemannian theory – Wikipedia, The Free Encyclopedia (2019). https://en.wikipedia.org/w/index.php?title=Neo-Riemannian_theory&oldid=893433197. Accessed 10 July 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, H., Gerhard, D. (2021). Modelling 4-Dimensional Tonal Pitch Spaces with Hopf Fibration. In: Kronland-Martinet, R., Ystad, S., Aramaki, M. (eds) Perception, Representations, Image, Sound, Music. CMMR 2019. Lecture Notes in Computer Science(), vol 12631. Springer, Cham. https://doi.org/10.1007/978-3-030-70210-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70210-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70209-0

  • Online ISBN: 978-3-030-70210-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics