Skip to main content

A Proposal of Clinical Decision Support System Using Ensemble Learning for Coronary Artery Disease Diagnosis

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2020)

Abstract

Coronary Artery heart Disease (CAD) is the leading cause of mortality in the world. It is a complex and multifactorial disease resulting in several acute coronary syndromes and lead to death. In healthcare, an accurate clinical decision support system (CDSS) for CAD prediction has become increasingly important for making granted decisions at premature stage. Intensive research has been conducted on improving classification performance using machine learning techniques and metaheuristics algorithms. But most of these studies introduced the “classic risk factors” for CAD diagnosis i.e., demographic and clinical data. In this study, we present a novel CDSS based on ensemble learning for CAD prediction and we emphasize on adding other medical markers i.e., therapy data, some genetic polymorphisms along with classical factors. The new framework exploits the potential of three base classifiers including Support Vector Machines, Naïve Bayes and Decision Tree C4.5 to improve the prediction performance. Six experimental data used to build the proposed framework: the first one is collected from a Tunisian biotechnology center and the five other datasets from the University of California at Irvine repository. The analysis of the results shows that the proposed CDSS has the highest rate on classification accuracy, precision, recall and F1-measure when compared with CSGA Bagging and Adaptive boosting on the different datasets and proves that some medications and genetic polymorphisms such as Antivitamin K, Dose Beta Blocker, Proton pump inhibitor, CYP2C19*17, Clopidogrel active metabolite have an impact in CAD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AHA Statistical Update.: Heart Disease and Stroke Statistics 2010 Update: Summary, A Report from the American Heart Association (2010)

    Google Scholar 

  2. Rajkumar, A., Reena, G.S.: Diagnosis of heart disease using datamining algorithm. Global J. Comput. Sci. Technol. 10(10), 38 (2010)

    Google Scholar 

  3. Genders, T.S., Steyerberg, E.W., Alkadhi, H., et al.: A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur. Heart J. 32(11), 1316–1330 (2011)

    Article  Google Scholar 

  4. Xu, H., Duan, Z., Miao, C., Geng, S., Jin, Y.: Development of a diagnosis model for coronary artery disease. Indian Heart J. 69(5), 634–639 (2017)

    Article  Google Scholar 

  5. AlHosani, A., AlShizawi, S., AlAli, S., Saleh, H., Assaf, T., Stouraitis, T.: Automatic detection of coronary artery disease (CAD) in an ECG signal. In: 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2017)

    Google Scholar 

  6. Martono, G.H., Adji, T.B.: Penggunaan Principal Component Analysis dan Pohon Keputusan untuk Mendeteksi Penyakit Jantung Koroner, Unpublished thesis, Dept. Elect. Eng., Universitas Gadjah Mada, Yogyakarta (2012)

    Google Scholar 

  7. Niranjana Devi, Y., Anto, S.: An evolutionary-fuzzy expert system for the diagnosis of coronary artery disease. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 34) (2014)

    Google Scholar 

  8. Baihaqi, W.M., Setiawan, N.A., Ardiyanto, I.: Rule extraction for fuzzy expert system to diagnose coronary artery disease. In: 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE),Yogyakarta, Indonesia (2016)

    Google Scholar 

  9. Miao, K.H., Miao, J.H., Miao, G.J.: Diagnosing coronary heart disease using ensemble machine learning. Int. J. Adv. Comput. Sci. Appl. 7(10), 30–39 (2016)

    Google Scholar 

  10. Samadiani, N., Moameri, S.: Diagnosis of coronary artery disease using cuckoo search and genetic algorithm in single photon emision computed tomography images. In: 7th International Conference on Computer and Knowledge Engineering (ICCKE 2017), 26–27 October 2017

    Google Scholar 

  11. Lei, K., Zhang, L., Shen, Y., Huang, X., Wu, J.: Syndromes diagnostic model for coronary artery disease (CAD): an improved naïve bayesian classification model based on attribute relevancy. In: IEEE 2nd International Conference on Big Data Analysis (ICBDA) (2017)

    Google Scholar 

  12. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques. Morgan Kaufmann, Burlington (2011)

    MATH  Google Scholar 

  13. Shalabi, L.A., Shaaban, Z., Kasasbeh, B.: Data mining: a preprocessing engine. J. Comput. Sci. 2(9), 735–739 (2006)

    Article  Google Scholar 

  14. Gopal Krishna Patro, S., Parimita Sahoo, P., Panda, I., Sahu, K.K.: Technical analysis on financial forecasting. Int. J. Comput. Sci. Eng. 03(01), 1–6. E-ISSN 2347-2693 (2015)

    Google Scholar 

  15. Panda, S.K., Nag, S., Jana, P.K.: A smoothing based task scheduling algorithm for heterogeneous multi-cloud environment. In: 3rd IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat. IEEE (2014)

    Google Scholar 

  16. Kotsiantis, S.B., Pintelas, P.E., Kanellopoulus, D.: Handling imbalanced datasets: a review. In: GESTS International Transactions on Computer Science and Engineering 30 (2006)

    Google Scholar 

  17. Wang, S., Yao, X.: Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(4), 1119 (2012)

    Google Scholar 

  18. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  19. Wang, L., Ni, M., Zhu, L.: Correlation coefficient of dual hesitant fuzzy sets and its applications. Appl. Math. Model. 38, 12 (2013).

    Google Scholar 

  20. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 10(5), 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics Advance Access, 24 August 2007

    Google Scholar 

  22. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  23. Pradhan, D., Padhy, S., Sahoo, B.: Enzyme classification using multiclass support vector machine and feature subset selection. Comput. Biol. Chem. 70, 211–219 (2017)

    Article  Google Scholar 

  24. Bolón-Canedon, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Data classification using an ensemble of filters. Neurocomputing 135, 13–20 (2014)

    Article  Google Scholar 

  25. Bashir, S., Qamar, U., Khan, F.H.: IntelliHealth: a medical decision support application using a novel weighted multi-layer classifier ensemble framework. J. Biomed. Informatics 59, 185–200 (2016)

    Article  Google Scholar 

  26. Zhou, L., Lai, K.K., Yu, L.: Least squares support vector machines ensemble models for credit scoring. Expert Syst. Appl. 37, 127–133 (2010)

    Article  Google Scholar 

  27. Yu, L., Lai, K.K., Wang, S., Huang, W.: A bias-variance-complexity trade-off framework for complex system modeling. In: Gavrilova, M. (ed.) ICCSA 2006. LNCS, vol. 3980, pp. 518–527. Springer, Heidelberg (2006). https://doi.org/10.1007/11751540_55

    Chapter  Google Scholar 

  28. Vapnik, V.N.: The Nature of Statistical Learning Theory, Springer, New York (2000). https://doi.org/10.1007/978-1-4757-3264-1

  29. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Gunn, S.: Support Vector Machines for classification and Regression, Technical report, University of Southampton (1998)

    Google Scholar 

  31. Mitchell, T.M.: Machine Learning, 1st edn. McGrawHill, New York (1997)

    MATH  Google Scholar 

  32. Rokach, L.: Decision forest twenty years of research. Inf. Fusion 27, 111–125 (2016)

    Article  Google Scholar 

  33. Verma, L., Srivastava, S., Negi, P.C.: An intelligent noninvasive model for coronary artery disease detection. Complex Intell. Syst. 4(1), 11–18 (2018)

    Article  Google Scholar 

  34. Sharma, P., Saxena, K., Sharma, R.: Heart disease prediction system evaluation using C4.5 rules and partial tree. In: Behera, H.S., Mohapatra, D.P. (eds.) Computational Intelligence in Data Mining—Volume 2. AISC, vol. 411, pp. 285–294. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2731-1_26

    Chapter  Google Scholar 

  35. Kinaci, A.C., Yucebas, S.C.: Cost reduction in thyroid diagnosis: a hybrid model with SOM and C4.5 decision trees. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 440–448. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26535-3_50

    Chapter  Google Scholar 

  36. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., Burlington (1993)

    Google Scholar 

  37. Özçift, A.: Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Comput. Biol. Med. 41(5), 265–271 (2011)

    Article  Google Scholar 

  38. Azar, A.T., Elshazly, H.I., Hassanien, A.E., Elkorany, A.M.: A random forest classifier for lymph diseases: Comput. Meth. Programs Biomed. 113(2), 465–473 (2014)

    Article  Google Scholar 

  39. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6562–6566 (2002)

    Google Scholar 

  40. Blake, B.K.-S.C., Merz, C.J.: UCI repository of machine learning databases: Dep. Inf. Comput. Sci. Univ. California, Irvine, CA (1998)

    Google Scholar 

  41. Cheung, B.K., Ng, A.C.: An efficient and reliable algorithm for non-smooth nonlinear optimization. Neural Parallel FJ Sci. Comput. 3, 115–128 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawia Sammout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sammout, R., Salah, K.B., Ghedira, K., Abdelhedi, R., Kharrat, N. (2021). A Proposal of Clinical Decision Support System Using Ensemble Learning for Coronary Artery Disease Diagnosis. In: Ye, J., O'Grady, M.J., Civitarese, G., Yordanova, K. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-70569-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70569-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70568-8

  • Online ISBN: 978-3-030-70569-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics