Skip to main content

Towards Mobile-Based Preprocessing Pipeline for Electroencephalography (EEG) Analyses: The Case of Tinnitus

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2020)

Abstract

Recent developments in Brain-Computer Interfaces (BCI)—technologies to collect brain imaging data—allow recording of Electroencephalography (EEG) data outside of a laboratory setting by means of mobile EEG systems. Brain imaging has been pivotal in understanding the neurobiological correlates of human behavior in many complex disorders. This is also the case for tinnitus, a disorder that causes phantom noise sensations in the ears in absence of any sound source. As studies have shown that tinnitus is also influenced by complexities in non-auditory brain areas, mobile EEG can be a viable solution in better understanding the influencing factors causing tinnitus. Mobile EEG will become even more useful, if real-time EEG analysis in mobile experimental environments is enabled, e.g., as an immediate feedback to physicians and patients or in undeveloped areas where a laboratory setup is unfeasible. The volume and complexity of brain imaging data have made preprocessing a pertinent step in the process of analysis, e.g., for data cleaning and artifact removal. We introduce the first smartphone-based preprocessing pipeline for real-time EEG analysis. More specifically, we present a mobile app with a rudimentary EEG preprocessing pipeline and evaluate the app and its resource consumption underpinning the feasibility of smartphones for EEG preprocessing. Our proposed approach will allow researchers to collect brain imaging data of tinnitus and other patients in real-world environments and everyday situations, thereby collecting evidence for previously unknown facts about tinnitus and other conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.brainproducts.com/productdetails.php?id=63 Accessed: 15/06/2020.

  2. 2.

    https://github.com/berndporr/iirj Accessed: 15/06/2020.

  3. 3.

    https://github.com/NeuroTechX/eeg-101 Accessed: 15/06/2020.

  4. 4.

    https://github.com/PhilJay/MPAndroidChart Accessed: 15/06/2020.

  5. 5.

    https://consumer.huawei.com/de/support/phones/p20-lite/ Accessed: 15/06/2020.

References

  1. Cleanline. https://www.nitrc.org/projects/cleanline. Accessed 04 June 2020

  2. Abolfazli, S., Sanaei, Z., Gani, A.: Mobile cloud computing: a review on smartphone augmentation approaches. arXiv preprint arXiv:1205.0451 (2012)

  3. Adjamian, P.: The application of electro-and magneto-encephalography in tinnitus research-methods and interpretations. Front. Neurol. 5, 228 (2014)

    Article  Google Scholar 

  4. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A.: The prep pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinf. 9, 16 (2015). https://doi.org/10.3389/fninf.2015.00016, https://www.frontiersin.org/article/10.3389/fninf.2015.00016

  5. da Cruz, J.R., Chicherov, V., Herzog, M.H., Figueiredo, P.: An automatic pre-processing pipeline for EEG analysis (APP) based on robust statistics. Clin. Neurophysiol. 129, 1427–1437 (2018)

    Article  Google Scholar 

  6. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  7. Dohrmann, K., Weisz, N., Schlee, W., Hartmann, T., Elbert, T.: Neurofeedback for treating tinnitus. Progress Brain Res. 166, 473–554 (2007)

    Article  Google Scholar 

  8. Elgoyhen, A.B., Langguth, B., De Ridder, D., Vanneste, S.: Tinnitus: perspectives from human neuroimaging. Nature Rev. Neurosci. 16(10), 632–642 (2015)

    Article  Google Scholar 

  9. Esch, L., et al.: MNE: software for acquiring, processing, and visualizing MEG/EEG data. In: Magnetoencephalography: From Signals to Dynamic Cortical Networks, pp. 355–371 (2019)

    Google Scholar 

  10. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Comm. Mag. 49(11), 32–39 (2011)

    Article  Google Scholar 

  11. Güntensperger, D., Thüring, C., Meyer, M., Neff, P., Kleinjung, T.: Neurofeedback for tinnitus treatment-review and current concepts. Front. Aging Neurosci. 9, 386 (2017)

    Article  Google Scholar 

  12. Hassani, M., Karami, M.R.: Noise estimation in electroencephalogram signal by using Volterra series coefficients. J. Med. Signals Sens. 5(3), 192 (2015)

    Article  Google Scholar 

  13. Jastreboff, P.J.: Phantom auditory perception (Tinnitus): mechanisms of generation and perception. Neurosci. Res. 8(4), 221–254 (1990)

    Article  Google Scholar 

  14. Jastreboff, P.J., Hazell, J.W.: A neurophysiological approach to tinnitus: clinical implications. Br. J. Audiol. 27(1), 7–17 (1993)

    Article  Google Scholar 

  15. Kothe, C.A., Makeig, S.: BCILAB: a platform for brain-computer interface development. J. Neural Eng. 10(5), 056014 (2013)

    Article  Google Scholar 

  16. Kranczioch, C., Zich, C., Schierholz, I., Sterr, A.: Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. Int. J. Psychophysiol. 91(1), 10–15 (2014)

    Article  Google Scholar 

  17. Lau-Zhu, A., Lau, M.P., McLoughlin, G.: Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges. Develop. Cogn. Neurosci. 36, 100635 (2019)

    Article  Google Scholar 

  18. Levin, A.R., Méndez Leal, A.S., Gabard-Durnam, L.J., O’Leary, H.M.: BEAPP: the batch electroencephalography automated processing platform. Front. Neurosci. 12, 513 (2018)

    Article  Google Scholar 

  19. Lin, Y.P., Wang, Y., Jung, T.P.: Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset. J. Neuroeng. Rehabil. 11(1), 119 (2014)

    Article  Google Scholar 

  20. Mehdi, M.: Smart mobile crowdsensing for tinnitus research: student research abstract. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 1220–1223. ACM (2019)

    Google Scholar 

  21. Miyakoshi, M.: Makoto’s preprocessing pipeline. Swartz Center for Computational Neuroscience (2018)

    Google Scholar 

  22. Mullen, T.: Cleanline EEGLAB plugin. Neuroimaging Informatics Toolsand Resources Clearinghouse (NITRC), San Diego (2012)

    Google Scholar 

  23. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011)

    Article  Google Scholar 

  24. Pedroni, A., Bahreini, A., Langer, N.: Automagic: standardized preprocessing of big EEG data. Neuroimage 200, 460–473 (2019)

    Article  Google Scholar 

  25. Rajkumar, R., et al.: Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Hum. Brain Mapp. (2018)

    Google Scholar 

  26. Reiser, J.E., Wascher, E., Arnau, S.: Recording mobile EEG in an outdoor environment reveals cognitive-motor interference dependent on movement complexity. Sci. Rep. 9(1), 1–14 (2019)

    Article  Google Scholar 

  27. Renard, Y., et al.: Openvibe: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence Teleoper. Virtual Environ. 19(1), 35–53 (2010)

    Google Scholar 

  28. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  29. Schlee, W., et al.: Innovations in doctoral training and research on tinnitus: the European school on interdisciplinary tinnitus research (ESIT) perspective. Front. Aging Neurosci. 9, 447 (2018)

    Article  Google Scholar 

  30. Stopczynski, A., et al.: Smartphones as pocketable labs: visions for mobile brain imaging and neurofeedback. Int. J. Psychophysiol. 91(1), 54–66 (2014)

    Article  Google Scholar 

  31. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011)

    Article  Google Scholar 

  32. Xiong, H., Zhang, D., Wang, L., Chaouchi, H.: EMC\(^3\): energy-efficient data transfer in mobile crowdsensing under full coverage constraint. IEEE Trans. Mobile Comp. 14(7), 1355–1368 (2015)

    Article  Google Scholar 

  33. Zhuang, Z., Kim, K.H., Singh, J.P.: Improving energy efficiency of location sensing on smartphones. In: Proceedings of the 8th International Conference on Mobile Systems, Applications and Services (MobiSys), pp. 315–330. ACM (2010)

    Google Scholar 

Download references

Acknowledgment

This publication is a result of research supported by funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 722064 (European School for Interdisciplinary Tinnitus Research, ESIT) [29]. We would also like to acknowledge Brain Products GmbH (https://www.brainproducts.com/ Accessed: 15/06/2020) for their help and support while working with the LiveAmp 16 EEG amplifier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muntazir Mehdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehdi, M. et al. (2021). Towards Mobile-Based Preprocessing Pipeline for Electroencephalography (EEG) Analyses: The Case of Tinnitus. In: Ye, J., O'Grady, M.J., Civitarese, G., Yordanova, K. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-70569-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70569-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70568-8

  • Online ISBN: 978-3-030-70569-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics