Skip to main content

A Multi-objective Approach for Wireless Heterogeneous Router Placement in Rural Wireless Mesh Networks

  • Conference paper
  • First Online:
Towards new e-Infrastructure and e-Services for Developing Countries (AFRICOMM 2020)

Abstract

The design of a wireless mesh network is usually posed as a multi-objective optimization problem. In this paper, we consider the planning of a wireless mesh network in a rural region where the network coverage and the cost of the architecture must be optimized. In addition, mesh routers are heterogeneous, meaning that they may have different transmission ranges. In the network model, we assume that the region to serve is divided into a set of small zones of various types, including cost-effective locations and zones of interest for which the coverage is mandatory. The objective is then to minimize the number of routers, their types and locations which maximize the coverage percentage of mandatory zones in terms of coverage while minimizing the overall cost of the architecture. To achieve this, we propose three multi-objective approaches. We test the proposed approaches on several random topologies. The min-max regret metric is used to appreciate the quality of solutions of the Pareto front of different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Africa Internet Users: 2020 Population and Facebook Statistics (2020). https://www.internetworldstats.com/stats1.htm. Accessed 21 July 2020

  2. Akyildiz, I.F., Wang, X.: Wireless Mesh Networks. John Wiley & Sons, Chichester (2009)

    Book  Google Scholar 

  3. Rey-Moreno, C., Graaf, M.: Map of the community network initiatives in Africa. In: Belli, L. (ed.) Community Connectivity: Build the Internet Scratch, pp. 149–169 (2016)

    Google Scholar 

  4. Ebongue, J.L.F.K.: Rethinking Network Connectivity in Rural Communities in Cameroon (2015). arXiv preprint: arXiv:1505.04449. (Lilongwe, M.)

  5. Bernardi, G., Marina, M.K., Talamona, F., Rykovanov, D.: IncrEase: a tool for incremental planning of rural fixed Broadband Wireless Access networks. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1013–1018. IEEE (2011)

    Google Scholar 

  6. Pötsch, T., Yousaf, S., Raghavan, B., Chen, J.: Zyxt: a network planning tool for rural wireless ISPs. In: Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 1–11 (2018)

    Google Scholar 

  7. Yin, C., Yang, R., Zou, X., Zhu, W.: Research on topology planning for wireless mesh networks based on deep reinforcement learning. In: 2020 2nd International Conference on Computer Communication and the Internet (ICCCI), pp. 6–11. IEEE (2020)

    Google Scholar 

  8. Xhafa, F., Barolli, A., Sánchez, C., Barolli, L.: A simulated annealing algorithm for router nodes placement problem in wireless mesh networks. Simul. Model. Pract. Theory 19, 2276–2284 (2011)

    Article  Google Scholar 

  9. Fendji, J.L.E.K., Thron, C., Nlong, J.M.: A metropolis approach for mesh router nodes placement in rural wireless mesh networks (2015). arXiv preprint: arXiv:1504.08212

  10. Benyamina, D., Hafid, A., Gendreau, M.: Wireless mesh networks design: a survey. IEEE Commun. Surv. Tutor. 14, 299–310 (2012). https://doi.org/10.1109/SURV.2011.042711.00007

    Article  Google Scholar 

  11. Garces, R., Garcia-Luna-Aceves, J.J.: Collision avoidance and resolution multiple access for multichannel wireless networks. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), pp. 595–602. IEEE (2000)

    Google Scholar 

  12. Darties, B., Theoleyre, F., Duda, A.: A divide-and-conquer scheme for assigning roles in multi-channel wireless mesh networks. In: 2009 IEEE 34th Conference on Local Computer Networks, pp. 277–280. IEEE (2009)

    Google Scholar 

  13. Chaudhry, A.U., Hafez, R.H., Aboul-Magd, O., Mahmoud, S.A.: Throughput improvement in multi-radio multi-channel 802.11 a-based wireless mesh networks. In: 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5. IEEE (2010)

    Google Scholar 

  14. Ramachandran, K.N., Belding-Royer, E.M., Almeroth, K.C., Buddhikot, M.M.: Interference Aware Channel Assignment in Multi-Radio Wireless Mesh Networks. In: Infocom, pp. 1–12 (2006)

    Google Scholar 

  15. Pathak, P.H., Dutta, R.: A survey of network design problems and joint design approaches in wireless mesh networks. IEEE Commun. Surv. Tutor. 13, 396–428 (2010)

    Article  Google Scholar 

  16. Samo, S.D., Fendji, J.L.E.K.: Evaluation of energy consumption of proactive reactive and hybrid routing protocols in wireless mesh networks using 802.11 standards. J. Comput. Commun. 6, 1–30 (2018). https://doi.org/10.4236/jcc.2018.64001

    Article  Google Scholar 

  17. Fendji, J.L.E.K., Samo, S.D.: Energy and Performance Evaluation of Reactive, Proactive, and Hybrid Routing Protocols in Wireless Mesh Network. Social Science Research Net-work, Rochester, NY (2019)

    Google Scholar 

  18. Fu, B., Xiao, Y., Deng, H., Zeng, H.: A survey of cross-layer designs in wireless net-works. IEEE Commun. Surv. Tutor. 16, 110–126 (2013)

    Article  Google Scholar 

  19. Xhafa, F., Sánchez, C., Barolli, L.: Genetic algorithms for efficient placement of router nodes in wireless mesh networks. In: 2010 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 465–472. IEEE (2010)

    Google Scholar 

  20. Ameen, S.Q., Muniyandi, R.C.: Improvement at network planning using heuristic algorithm to minimize cost of distance between nodes in wireless mesh networks. Int. J. Electr. Comput. Eng. 7, 309 (2017)

    Google Scholar 

  21. Li, F., Wang, Y., Li, X.-Y., Nusairat, A., Wu, Y.: Gateway placement for throughput optimization in wireless mesh networks. Mob. Netw. Appl. 13, 198–211 (2008)

    Article  Google Scholar 

  22. Kemal, M.S., Ceocea, A., Olsen, R.L.: Gateway placement for wireless mesh networks in smart grid network planning. In: 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 144–147. IEEE (2016)

    Google Scholar 

  23. De Marco, G.: MOGAMESH: A multi-objective algorithm for node placement in wireless mesh networks based on genetic algorithms. In: 2009 6th International Symposium on Wireless Communication Systems, pp. 388–392. IEEE (2009)

    Google Scholar 

  24. Amaldi, E., Capone, A., Cesana, M., Filippini, I., Malucelli, F.: Optimization models and methods for planning wireless mesh networks. Comput. Netw. 52, 2159–2171 (2008). https://doi.org/10.1016/j.comnet.2008.02.020

    Article  MATH  Google Scholar 

  25. Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: IEEE Internatonal Conference on Mobile ad-hoc and Sensor Systems, 2007. MASS 2007, pp. 1–9 (2007). https://doi.org/10.1109/MOBHOC.2007.4428616

  26. Ebongue, J.L.F.K., Thron, C., Nlong, J.M.: Mesh Router Nodes placement in Rural Wireless Mesh Networks (2015). arXiv preprint: arXiv:1505.03332

  27. Fendji, J.L., Thron, C., Nlong, J.M.: Simulated annealing approach for mesh router placement in rural Wireless Mesh Networks. In: 7th International Conference, AFRICOMM, pp. 15–16 (2015)

    Google Scholar 

  28. Fendji, J.L.K.E., Thron, C.: A Simulated Annealing Based Centre of Mass (SAC) Approach for Mesh Routers Placement in Rural Areas. www.igi-global.com/article/a-simulated-annealing-based-centre-of-mass-sac-approach-for-mesh-routers-placement-in-rural-areas/243420. Accessed 12 June 2020

  29. Ebongue, F.K., Louis, J.: Wireless Mesh Network: a rural community case (2015). http://oatd.org/oatd/record?record=oai%5C%3Aelib.suub.uni-bremen.de%5C%3ADISS%5C%2F00104709

  30. Ebongue, J.L.F.K., Thron, C.: Centre of Mass of single coverage: a comparative study with Simulated Annealing for mesh router placement in rural regions. In: Proceedings of CARI, p. 203 (2016)

    Google Scholar 

  31. Fendji, J.L.E.K., Mafai, N.M., Nlong, J.M.: Slope-based Empirical Path Loss Prediction Models for rural networks at 2.4 GHz. Trans. Netw. Commun. 7, 84 (2019). https://doi.org/10.14738/tnc.71.6162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Louis Ebongue Kedieng Fendji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fendji, J.L.E.K., Thron, C., Förster, A. (2021). A Multi-objective Approach for Wireless Heterogeneous Router Placement in Rural Wireless Mesh Networks. In: Zitouni, R., Phokeer, A., Chavula, J., Elmokashfi, A., Gueye, A., Benamar, N. (eds) Towards new e-Infrastructure and e-Services for Developing Countries. AFRICOMM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-70572-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70572-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70571-8

  • Online ISBN: 978-3-030-70572-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics