Skip to main content

Spatial Reciprocity Aided CSI Acquirement for HST Massive MIMO

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12634))

Included in the following conference series:

Abstract

This paper proposes a channel estimation scheme for large-scale multiple-input multiple-output (MIMO) systems in high-speed train (HST) scenarios. On the premise that the priori velocity is accurate, we introduce fuzzy prior spatial knowledge and design a sparse received signal model with dynamic grids. After reconstructing the channel estimation into a sparse Bayesian learning (SBL) parameter estimation problem, the maximization-minimization (MM) algorithm is adopted to solve the problem, and a fast searching algorithm based on significant gradient is proposed to solve the multi-peak optimization problem of the surrogate function. Finally, the simulation verifies that the scheme can converge quickly and has accurate estimation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren, X., Chen, W., Tao, M.: Position-based compressed channel estimation and pilot design for high-mobility OFDM systems. IEEE Trans. Veh. Technol. 64(5), 1918–1929 (2014)

    Article  Google Scholar 

  2. Guo, W., Zhang, W., Mu, P., Gao, F.: High-mobility OFDM downlink transmission with large-scale antenna array. IEEE Trans. Veh. Technol. 66(9), 8600–8604 (2017)

    Article  Google Scholar 

  3. Guo, W., Zhang, W., Mu, P., Gao, F., Lin, H.: High-mobility wideband massive MIMO communications: doppler compensation, analysis and scaling law. IEEE Transactions on Wireless Communications (2019)

    Google Scholar 

  4. Fan, D., Zhong, Z., Wang, G., Gao, F.: Doppler shift estimation for high-speed railway wireless communication systems with large-scale linear antennas. In: 2015 International Workshop on High Mobility Wireless Communications (HMWC), pp. 96–100. IEEE (2015)

    Google Scholar 

  5. Hou, Z., Zhou, Y., Tian, L., Shi, J., Li, Y., Vucetic, B.: Radio environment mapaided doppler shift estimation in LTE railway. IEEE Trans. Veh. Technol. 66(5), 4462–4467 (2016)

    Article  Google Scholar 

  6. He, R., Zhong, Z., Ai, B., Wang, G., Ding, J., Molisch, A.F.: Measurements and analysis of propagation channels in high-speed railway viaducts. IEEE Trans. Wireless Commun. 12(2), 794–805 (2012)

    Article  Google Scholar 

  7. Li, T., Wang, X., Fan, P., Riihonen, T.: Position-aided large-scale MIMO channel estimation for high-speed railway communication systems. IEEE Trans. Veh. Technol. 66(10), 8964–8978 (2017)

    Article  Google Scholar 

  8. Garcia, N., Wymeersch, H., Stro¨m, E.G., Slock, D.: Location-aided mm-wave channel estimation for vehicular communication. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2016)

    Google Scholar 

  9. Zhang, C., Zhang, J., Huang, Y., Yang, L.: Location-aided channel tracking and downlink transmission for HST massive MIMO systems. IET Commun. 11(13), 2082–2088 (2017)

    Article  Google Scholar 

  10. Gong, Z., Jiang, F., Li, C.: Angle domain channel tracking with large antenna array for high mobility V2I millimeter wave communications. IEEE J. Selected Topics Signal Process. 13(5), 1077–1089 (2019)

    Article  Google Scholar 

  11. Liu, G., Liu, A., Zhang, R., Zhao, M.-J.: Angular-Domain Selective Channel Tracking and Doppler Compensation for High-Mobility mmWave Massive MIMO, arXiv preprint arXiv:1911.08683 (2019)

  12. Han, Y., Liu, Q., Wen, C.-K., Matthaiou, M., Ma, X.: Tracking fdd massive mimo downlink channels by exploiting delay and angular reciprocity. IEEE J. Sel. Topics Signal Process. 13(5), 1062–1076 (2019)

    Article  Google Scholar 

  13. Hugl, K., Kalliola, K., Laurila, J.: Spatial reciprocity of uplink and downlink radio channels in FDD systems. In: Proceedings of the COST, vol. 273, no. 2. Citeseer, p. 066 (2002)

    Google Scholar 

  14. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key R&D Program of China (No. 2018YFB1201500), the National Natural Science Foundation of China under Grant No. 61771072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaihang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, K., Teng, Y., Liu, A., Song, M. (2021). Spatial Reciprocity Aided CSI Acquirement for HST Massive MIMO. In: Zu, Q., Tang, Y., Mladenović, V. (eds) Human Centered Computing. HCC 2020. Lecture Notes in Computer Science(), vol 12634. Springer, Cham. https://doi.org/10.1007/978-3-030-70626-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70626-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70625-8

  • Online ISBN: 978-3-030-70626-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics