Skip to main content

Performance Comparison of Constriction and Linearly Decreasing Inertia Weight Router Replacement Methods for WMNs by WMN-PSOSA-DGA Hybrid Simulation System Considering Chi-Square Distribution of Mesh Clients

  • Conference paper
  • First Online:
Advances in Internet, Data and Web Technologies (EIDWT 2021)

Abstract

Wireless Mesh Networks (WMNs) are gaining a lot of attention from researchers due to their advantages such as easy maintenance, low upfront cost, and high robustness. Connectivity and stability directly affect the performance of WMNs. However, WMNs have some problems such as node placement problem, hidden terminal problem and so on. In our previous work, we implemented a simulation system to solve the node placement problem in WMNs considering Particle Swarm Optimization (PSO), Simulated Annealing (SA) and Distributed Genetic Algorithm (DGA), called WMN-PSOSA-DGA. In this paper, we evaluate the performance of Constriction Method (CM) and Linearly Decreasing Inertia Weight Method (LDIWM) for WMNs using WMN-PSOSA-DGA hybrid simulation system considering Chi-square distribution of mesh clients. Simulation results show that a good performance is achieved for CM compared with the case of LDIWM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S., Khan, M.A., Ishtiaq, A., Khan, Z.A., Ali, M.T.: Energy harvesting techniques for routing issues in wireless sensor networks. Int. J. Grid Util. Comput. 10(1), 10–21 (2019)

    Article  Google Scholar 

  2. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    Article  Google Scholar 

  3. Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: A hybrid simulation system based on particle swarm optimization and distributed genetic algorithm for wmns: performance evaluation considering normal and uniform distribution of mesh clients. In: International Conference on Network-Based Information Systems, pp. 42–55. Springer (2018)

    Google Scholar 

  4. Barolli, A., Sakamoto, S., Barolli, L., Takizawa, M.: Performance analysis of simulation system based on particle swarm optimization and distributed genetic algorithm for WMNs considering different distributions of mesh clients. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 32–45. Springer (2018)

    Google Scholar 

  5. Barolli, A., Sakamoto, S., Ozera, K., Barolli, L., Kulla, E., Takizawa, M.: Design and implementation of a hybrid intelligent system based on particle swarm optimization and distributed genetic algorithm. In: International Conference on Emerging Internetworking, Data & Web Technologies, pp. 79–93. Springer (2018)

    Google Scholar 

  6. Barolli, A., Sakamoto, S., Durresi, H., Ohara, S., Barolli, L., Takizawa, M.: A comparison study of constriction and linearly decreasing Vmax replacement methods for wireless mesh networks by WMN-PSOHC-DGA simulation system. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 26–34. Springer (2019)

    Google Scholar 

  7. Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering linearly decreasing inertia weight and linearly decreasing Vmax replacement methods. In: International Conference on Intelligent Networking and Collaborative Systems, pp. 14–23. Springer (2019)

    Google Scholar 

  8. Barolli, A., Sakamoto, S., Ohara, S., Barolli, L., Takizawa, M.: Performance analysis of WMNs by WMN-PSOHC-DGA simulation system considering random inertia weight and linearly decreasing Vmax router replacement methods. In: Conference on Complex, Intelligent, and Software Intensive Systems, pp. 13–21. Springer (2019)

    Google Scholar 

  9. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  10. Franklin, A.A., Murthy, C.S.R.: Node placement algorithm for deployment of two-tier wireless mesh networks. In: Proceedings of Global Telecommunications Conference, pp 4823–4827 (2007)

    Google Scholar 

  11. Girgis, M.R., Mahmoud, T.M., Abdullatif, B.A., Rabie, A.M.: Solving the wireless mesh network design problem using genetic algorithm and simulated annealing optimization methods. Int. J. Comput. Appl. 96(11), 1–10 (2014)

    Google Scholar 

  12. Gorrepotu, R., Korivi, N.S., Chandu, K., Deb, S.: Sub-1GHz miniature wireless sensor node for IoT applications. Internet Things 1, 27–39 (2018)

    Article  Google Scholar 

  13. Islam, M.M., Funabiki, N., Sudibyo, R.W., Munene, K.I., Kao, W.C.: A dynamic access-point transmission power minimization method using PI feedback control in elastic WLAN system for IoT applications. Internet Things 8(100), 089 (2019)

    Google Scholar 

  14. Maolin, T., et al.: Gateways placement in backbone wireless mesh networks. Int. J. Commun. Netw. Syst. Sci. 2(1), 44 (2009)

    Google Scholar 

  15. Marques, B., Coelho, I.M., Sena, A.D.C., Castro, M.C.: A network coding protocol for wireless sensor fog computing. Int. J. Grid Util. Comput. 10(3), 224–234 (2019)

    Article  Google Scholar 

  16. Matsuo, K., Sakamoto, S., Oda, T., Barolli, A., Ikeda, M., Barolli, L.: Performance analysis of WMNs by WMN-GA simulation system for two WMN architectures and different TCP congestion-avoidance algorithms and client distributions. Int. J. Commun. Netw. Distrib. Syst. 20(3), 335–351 (2018)

    Google Scholar 

  17. Muthaiah, S.N., Rosenberg, C.P.: Single gateway placement in wireless mesh networks. In: Proceedings of 8th International IEEE Symposium on Computer Networks, pp 4754–4759 (2008)

    Google Scholar 

  18. Naka, S., Genji, T., Yura, T., Fukuyama, Y.: A hybrid particle swarm optimization for distribution state estimation. IEEE Trans. Power Syst. 18(1), 60–68 (2003)

    Article  Google Scholar 

  19. Ohara, S., Barolli, A., Sakamoto, S., Barolli, L.: Performance analysis of WMNs by WMN-PSODGA simulation system considering load balancing and client uniform distribution. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 25–38. Springer (2019)

    Google Scholar 

  20. Ozera, K., Sakamoto, S., Elmazi, D., Bylykbashi, K., Ikeda, M., Barolli, L.: A fuzzy approach for clustering in MANETs: performance evaluation for different parameters. Int. J. Space-Based Situated Comput. 7(3), 166–176 (2017)

    Article  Google Scholar 

  21. Ozera, K., Bylykbashi, K., Liu, Y., Barolli, L.: A fuzzy-based approach for cluster management in VANETs: performance evaluation for two fuzzy-based systems. Internet Things 3, 120–133 (2018)

    Article  Google Scholar 

  22. Ozera, K., Inaba, T., Bylykbashi, K., Sakamoto, S., Ikeda, M., Barolli, L.: A WLAN triage testbed based on fuzzy logic and its performance evaluation for different number of clients and throughput parameter. Int. J. Grid Util. Comput. 10(2), 168–178 (2019)

    Article  Google Scholar 

  23. Petrakis, E.G., Sotiriadis, S., Soultanopoulos, T., Renta, P.T., Buyya, R., Bessis, N.: Internet of Things as a Service (iTaaS): challenges and solutions for management of sensor data on the cloud and the fog. Internet Things 3, 156–174 (2018)

    Article  Google Scholar 

  24. Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation of a new replacement method in WMN-PSO simulation system and its performance evaluation. In: The 30th IEEE International Conference on Advanced Information Networking and Applications (AINA 2016), pp. 206–211 (2016). https://doi.org/10.1109/AINA.2016.42

  25. Sakamoto, S., Barolli, A., Barolli, L., Takizawa, M.: Design and implementation of a hybrid intelligent system based on particle swarm optimization, hill climbing and distributed genetic algorithm for node placement problem in WMNs: a comparison study. In: The 32nd IEEE International Conference on Advanced Information Networking and Applications (AINA 2018), pp. 678–685. IEEE (2018)

    Google Scholar 

  26. Sakamoto, S., Ozera, K., Ikeda, M., Barolli, L.: Implementation of intelligent hybrid systems for node placement problem in WMNs considering particle swarm optimization, hill climbing and simulated annealing. Mobile Netw. Appl. 23(1), 27–33 (2018)

    Article  Google Scholar 

  27. Sakamoto, S., Barolli, A., Barolli, L., Okamoto, S.: Implementation of a web interface for hybrid intelligent systems. Int. J. Web Inf. Syst. 15(4), 420–431 (2019)

    Article  Google Scholar 

  28. Sakamoto, S., Barolli, L., Okamoto, S.: WMN-PSOSA: an intelligent hybrid simulation system for WMNs and its performance evaluations. Int. J. Web Grid Serv. 15(4), 353–366 (2019)

    Article  Google Scholar 

  29. Sakamoto, S., Ohara, S., Barolli, L., Okamoto, S.: Performance evaluation of WMNs by WMN-PSOHC system considering random inertia weight and linearly decreasing inertia weight replacement methods. In: International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 39–48. Springer (2019)

    Google Scholar 

  30. Sakamoto, S., Ohara, S., Barolli, L., Okamoto, S.: Performance evaluation of WMNs by WMN-PSOHC system considering random inertia weight and linearly decreasing Vmax replacement methods. In: International Conference on Network-Based Information Systems, pp. 27–36. Springer (2019)

    Google Scholar 

  31. Sakamoto, S., Ohara, S., Barolli, L., Okamoto, S.: Performance evaluation of WMNs WMN-PSOHC system considering constriction and linearly decreasing inertia weight replacement methods. In: International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 22–31. Springer (2019)

    Google Scholar 

  32. Schutte, J.F., Groenwold, A.A.: A Study of Global Optimization using Particle Swarms. J. Glob. Optim. 31(1), 93–108 (2005)

    Article  MathSciNet  Google Scholar 

  33. Shi, Y.: Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)

    Google Scholar 

  34. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, pp. 591–600 (1998)

    Google Scholar 

  35. Vanhatupa, T., Hannikainen, M., Hamalainen, T.: Genetic algorithm to optimize node placement and configuration for WLAN planning. In: The 4th IEEE International Symposium on Wireless Communication Systems, pp. 612–616 (2007)

    Google Scholar 

  36. Wang, J., Xie, B., Cai, K., Agrawal, D.P.: Efficient mesh router placement in wireless mesh networks. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS 2007), pp. 1–9 (2007)

    Google Scholar 

  37. Yaghoobirafi, K., Nazemi, E.: An autonomic mechanism based on ant colony pattern for detecting the source of incidents in complex enterprise systems. Int. J. Grid Util. Comput. 10(5), 497–511 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Barolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barolli, A., Sakamoto, S., Ampririt, P., Ohara, S., Barolli, L., Takizawa, M. (2021). Performance Comparison of Constriction and Linearly Decreasing Inertia Weight Router Replacement Methods for WMNs by WMN-PSOSA-DGA Hybrid Simulation System Considering Chi-Square Distribution of Mesh Clients. In: Barolli, L., Natwichai, J., Enokido, T. (eds) Advances in Internet, Data and Web Technologies. EIDWT 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-030-70639-5_9

Download citation

Publish with us

Policies and ethics