Abstract
As most of the published lattice based encryptions and key encapsulation mechanisms have decryption failure, they are subjected to side-channel attacks. In this paper, we construct an error-free lattice-based key encapsulation mechanism (KEM) which is based on LPR encryption. We also examine some new classes of cyclotomic polynomials for the new error-free lattice-based KEM. The proposed error-free KEM has a reasonable public key size of about 1.472 Kbytes for 128-bit quantum security level. This is comparable to those submitted to the NIST PQC standardization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: 29th ACM STOC, pp. 284–293. ACM Press, May 1997
Ajtai, M.: The shortest vector problem in \(L_2\) is NP-hard for randomized reductions (extended abstract). In: Vitter, J.S. (ed.) Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, 23–26 May 1998, pp. 10–19. ACM (1998). https://doi.org/10.1145/276698.276705
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Alkim, E., et al.: NewHope. https://newhopecrypto.org/data/NewHope_2019_04_10.pdf
Alkim, E., et al.: FrodoKEM learning with errors key encapsulation. https://frodokem.org/files/FrodoKEM-specification-20190702.pdf
Baan, H., et al.: Round5: KEM and PKE based on (ring) learning with rounding. https://round5.org/Supporting_Documentation/Round5_Submission.pdf
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime: reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_12
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime. NIST submission “Supporting Documentation”. https://ntruprime.cr.yp.to/nist.html
Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, report 2018/526 (2018). https://eprint.iacr.org/2018/526
Bindel, N., Schanck, J.M.: Decryption failure is more likely after success. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 206–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_12
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM (JACM) 50(4), 506–519 (2003)
van Emde Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in lattices. Technical report 81-04, Mathematics Department, University of Amsterdam (1981)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II: practical issues in cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 21–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_3
Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information: attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12
D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_19
D’Anvers, J.-P., Rossi, M., Virdia, F.: (One) failure is not an option: bootstrapping the search for failures in lattice-based encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_1
D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-011-9114-1
Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_4
Hamburg, M.: Post-quantum cryptography proposal: THREEBEARS. https://www.shiftleft.org/papers/threebears/nist-submission.pdf
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (1952)
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Lu, X., et al.: LAC: lattice-based cryptosystems. https://cs.rit.edu/~ats9095/csci762/pdfs/LAC.pdf
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 1–35 (2013). Article no. 43. Early version in EUROCRYPT 2010. https://doi.org/10.1145/2535925
Nguyen, P., Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055731
Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)
Regev O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005
Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17
Sarkar, P., Singha, S.: Verifying solutions to LWE with implications for concrete security. Adv. Math. Commun. (2020). https://www.aimsciences.org/article/doi/10.3934/amc.2020057
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994). https://doi.org/10.1007/BF01581144
Xu, Z., et al.: Magnifying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the case study of Kyber. Cryptology ePrint Archive, report 2020/912 (2020). https://eprint.iacr.org/2020/912
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, C.H., Prabowo, T.F. (2021). Error-Free Lattice-Based Key Encapsulation Mechanism Based on Ring-LWE. In: Nicolescu, G., Tria, A., Fernandez, J.M., Marion, JY., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2020. Lecture Notes in Computer Science(), vol 12637. Springer, Cham. https://doi.org/10.1007/978-3-030-70881-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-70881-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70880-1
Online ISBN: 978-3-030-70881-8
eBook Packages: Computer ScienceComputer Science (R0)