Skip to main content

Digger Finger: GelSight Tactile Sensor for Object Identification Inside Granular Media

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 19))

Included in the following conference series:

Abstract

Imagine you are at the beach with a metal detector which goes off, and you stick your hands in the sand to find the metal object. Even though the granular media (sand) is constantly affecting your sense of touch on your fingers and palm, its acuity combined with your cognition enables you to easily find buried objects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sparkfun.com/products/13944.

  2. 2.

    https://www.bauing.uni-kl.de/en/sdt/idynamics/.

  3. 3.

    https://download.cnet.com/Spectroid/3000-20432_4-77833231.html.

  4. 4.

    https://sites.google.com/view/diggerfinger.

  5. 5.

    http://www.image-net.org/.

References

  1. Nadeau, P., Abbott, M., Melville, D., Stuart, H.S.: IEEE International Conference on Robotics and Automation (2020)

    Google Scholar 

  2. Burtness, A.J.: Evaluation of haptic feedback methods for teleoperated explosive ordnance disposal robots. Master’s thesis, Johns Hopkins University (2011)

    Google Scholar 

  3. T4\(^{\rm TM}\) Robotic System (2019). https://www.harris.com/solution/t4-robotic-system. Library Catalog: www.harris.com

  4. Johnson, M.K., Adelson, E.H.: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1070–1077 (2009)

    Google Scholar 

  5. Johnson, M.K., Cole, F., Raj, A., Adelson, E.H.: ACM Transactions on Graphics (TOG) 30(4), 1 (2011)

    Google Scholar 

  6. Sarata, S., Osumi, H., Kawai, Y., Tomita, F.: IEEE International Conference on Robotics and Automation, 2004. In: Proceedings. ICRA 2004, vol. 4, pp. 3488–3493. IEEE (2004)

    Google Scholar 

  7. Li, C., Zhang, T., Goldman, D.I.: Science 339(6126), 1408 (2013)

    Google Scholar 

  8. Hauser, S., Eckert, P., Tuleu, A., Ijspeert, A.: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) (2016)

    Google Scholar 

  9. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Proceedings of the National Academy of Sciences, vol. 107(44), p. 18809 (2010)

    Google Scholar 

  10. Cheng, N.G., Lobovsky, M.B., Keating, S.J., Setapen, A.M., Gero, K.I., Hosoi, A.E., Iagnemma, K.D.: 2012 IEEE International Conference on Robotics and Automation, pp. 4328–4333. IEEE (2012)

    Google Scholar 

  11. Brown, J.P., Farkhatdinov, I.: 2020 IEEE Haptics Symposium (HAPTICS) (2020)

    Google Scholar 

  12. Stanley, A.A., Gwilliam, J.C., Okamura, A.M.: 2013 World Haptics Conference (WHC), pp. 25–30. IEEE (2013)

    Google Scholar 

  13. Yamaguchi, A., Atkeson, C.G., Ogasawara, T.: Int. J. Humanoid Rob. 12(03), 1550030 (2015)

    Google Scholar 

  14. Matl, C., Narang, Y., Bajcsy, R., Ramos, F., Fox, D.: arXiv preprint arXiv:2003.08032 (2020)

  15. Schenck, C., Tompson, J., Fox, D., Levine, S.: arXiv preprint arXiv:1709.02833 (2017)

  16. Clarke, S.: Robot learning for manipulation of granular materials using vision and sound. Master’s thesis, Carnegie Mellon University Pittsburgh (2019)

    Google Scholar 

  17. Clarke, S., Rhodes, T., Atkeson, C.G., Kroemer, O.: CoRL, pp. 529–550 (2018)

    Google Scholar 

  18. Travassos, X.L., Avila, S.L., Ida, N.: Applied Computing and Informatics (2020)

    Google Scholar 

  19. Martin, J.S., Fenneman, D.J., Codron, F.T., Rogers, P.H., Scott, W.R., Larson, G.D., McCall II, G.S.: Detection and Remediation Technologies for Mines and Minelike Targets VII, vol. 4742 (International Society for Optics and Photonics, vol. 4742, pp. 606–616 (2002)

    Google Scholar 

  20. Jia, S., Santos, V.J.: Proceedings of the RSS Workshop Tactile Sensing for Manipulation: Hardware, Modeling, and Learning, Boston, MA, USA, vol. 15 (2017)

    Google Scholar 

  21. Syrymova, T., Massalim, Y., Khassanov, Y., Kappassov, Z.: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 175–180. IEEE (2020)

    Google Scholar 

  22. Abad, A.C., Ranasinghe, A.: IEEE Sens. J. (2020)

    Google Scholar 

  23. Shimonomura, K.: Sensors 19(18), 3933 (2019)

    Google Scholar 

  24. Yuan, W., Dong, S., Adelson, E.H.: Sensors (2017)

    Google Scholar 

  25. Donlon, E., Dong, S., Liu, M., Li, J., Adelson, E., Rodríguez, A.: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1927–1934 (2018)

    Google Scholar 

  26. Romero, B., Veiga, F., Adelson, E.: ArXiv abs/2005.09068 (2020)

    Google Scholar 

  27. Brzinski III, T.A., Durian, D.J.: Soft Matter 6(13), 3038 (2010)

    Google Scholar 

  28. Naclerio, N.D., Hubicki, C.M., Aydin, Y.O., Goldman, D.I., Hawkes, E.W.: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5918–5923. IEEE (2018)

    Google Scholar 

  29. Firstbrook, D., Worrall, K., Timoney, R., Suñol, F., Gao, Y., Harkness, P.: Proceedings of the royal society a: mathematical. Phys. Eng. Sci. 473(2198), 20160673 (2017)

    Google Scholar 

  30. Texier, B.D., Ibarra, A., Melo, F.: PLoS ONE 12, 4 (2017)

    Google Scholar 

  31. Seguin, A., Bertho, Y., Gondret, P.: Phys. Rev. E 78(1), 010301 (2008)

    Article  Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Toyota Research Institute, the Office of Naval Research (ONR) [N00014-18-1-2815], and the GentleMAN project of the Norwegian Research Council. We would like to thank Achu Wilson, Shaoxiong Wang, Sandra Liu, Yu She, Filipe Veiga, and Megha Tippur for insightful discussions. We also thank Siyuan Dong, Daolin Ma and Alberto Rodriguez for lending us the force-torque sensor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhen Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, R., Ouyang, R., Romero, B., Adelson, E. (2021). Digger Finger: GelSight Tactile Sensor for Object Identification Inside Granular Media. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_10

Download citation

Publish with us

Policies and ethics