Skip to main content

Towards a Reliable Heterogeneous Robotic Water Quality Monitoring System: An Experimental Analysis

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Abstract

This paper describes experiments that tested the effect of robotic movement on the reliability of aquatic sensor readings. It also demonstrates the utility of a heterogeneous system of robots to advance limnological monitoring and research.

M. Roznere and M. Jeong–These authors contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arzamendia, M., Gregor, D., Reina, D.G., Toral, S.L.: An evolutionary approach to constrained path planning of an autonomous surface vehicle for maximizing the covered area of ypacarai lake. Soft Comput. 23, 1723–1734 (2019)

    Article  Google Scholar 

  2. Dunbabin, M., Marques, L.: Robots for environmental monitoring: Significant advancements and applications. IEEE Robot. Autom. Mag. 19(1), 24–39 (2012)

    Article  Google Scholar 

  3. Ferri, G., Manzi, A., Fornai, F., Ciuchi, F., Laschi, C.: The hydronet ASV, a small-sized autonomous catamaran for real-time monitoring of water quality: from design to missions at sea. IEEE J. Oceanic Eng. 40, 710–726 (2015)

    Article  Google Scholar 

  4. Flaspohler, G., Preston, V., Michel, A.P., Girdhar, Y., Roy, N.: Information-guided robotic maximum seek-and-sample in partially observable continuous environments. IEEE Robot. Autom. Lett. 4(4), 3782–3789 (2019)

    Article  Google Scholar 

  5. Fossum, T.O., Fragoso, G.M., Davies, E.J., Ullgren, J.E., Mendes, R., Johnsen, G., Ellingsen, I., Eidsvik, J., Ludvigsen, M., Rajan, K.: Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Sci. Robot. 4(27), (2019)

    Google Scholar 

  6. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Autom. Syst. 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  7. Garneau, M.E., Posch, T., Hitz, G., Pomerleau, F., Pradalier, C., Siegwart, R., Pernthaler, J.: Short-term displacement of planktothrix rubescens (cyanobacteria) in a pre-alpine lake observed using an autonomous sampling platform. Limnol. Oceanogr. 58(5), 1892–1906 (2013)

    Article  Google Scholar 

  8. Hitz, G., Galceran, E., Garneau, M.È., Pomerleau, F., Siegwart, R.: Adaptive continuous-space informative path planning for online environmental monitoring. J. Field Robot. 34(8), 1427–1449 (2017)

    Article  Google Scholar 

  9. Hitz, G., Pomerleau, F., Garneau, M.È., Pradalier, C., Posch, T., Pernthaler, J., Siegwart, R.Y.: Autonomous inland water monitoring: design and application of a surface vessel. IEEE Robot. Autom. Mag. 19, 62–72 (2012)

    Article  Google Scholar 

  10. Jeong, M., Roznere, M., Lensgraf, S., Sniffen, A., Balkcom, D., Quattrini Li, A.: Catabot: Autonomous surface vehicle with an optimized design for environmental monitoring. In: Proceedings OCEANS (2020)

    Google Scholar 

  11. Karapetyan, N., Moulton, J., Lewis, J.S., Quattrini Li, A., O’Kane, J.M., Rekleitis, I.: Multi-robot dubins coverage with autonomous surface vehicles. In: Proceedings ICRA, pp. 2373–2379 (2018)

    Google Scholar 

  12. Kraemer, B.: Rethinking discretization to advance limnology amid the ongoing information explosion. Water Res. 178 (2020)

    Google Scholar 

  13. Teece, M.A.: An inexpensive remotely operated vehicle for underwater studies. Limnol. Ocean.: Methods 7(3), 206–215 (2019)

    Google Scholar 

  14. Welschmeyer, N.A.: Fluorometric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994)

    Article  Google Scholar 

  15. Wilkinson, A., Hondzo, M., Guala, M.: Vertical heterogeneities of cyanobacteria and microcystin concentrations in lakes using a seasonal in situ monitoring station. Global Ecol. Conserv. 21, e00838 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NSF CNS-1919647, OIA-1923004, ICER-1517823, DEB-1753639. We thank the Eliassen family who provided access to sites; the Lake Sunapee Protective Association (LSPA) for boat and buoy assistance; and all the students in the ES 494 Senior Research Capstone class of Fall 2020 in Colby College, in particular, Grace Neumiller, Taryn Waite, and Grace Andrews, for their support in chlorophyll sampling at China Lake, ME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Roznere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roznere, M. et al. (2021). Towards a Reliable Heterogeneous Robotic Water Quality Monitoring System: An Experimental Analysis. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_13

Download citation

Publish with us

Policies and ethics