Skip to main content

LION: Lidar-Inertial Observability-Aware Navigator for Vision-Denied Environments

  • Conference paper
  • First Online:
Experimental Robotics (ISER 2020)

Abstract

State estimation for robots navigating in GPS-denied and perceptually-degraded environments, such as underground tunnels, mines and planetary sub-surface voids [1], remains challenging in robotics. Towards this goal, we present LION (Lidar-Inertial Observability-Aware Navigator), which is part of the state estimation framework developed by the team CoSTAR [2] for the DARPA Subterranean Challenge [3], where the team achieved second and first places in the Tunnel and Urban circuits in August 2019 and February 2020, respectively. LION provides high-rate odometry estimates by fusing high-frequency inertial data from an IMU and low-rate relative pose estimates from a lidar via a fixed-lag sliding window smoother. LION does not require knowledge of relative positioning between lidar and IMU, as the extrinsic calibration is estimated online. In addition, LION is able to self-assess its performance using an observability metric that evaluates whether the pose estimate is geometrically ill-constrained. Odometry and confidence estimates are used by HeRO [4], a supervisory algorithm that provides robust estimates by switching between different odometry sources. In this paper we benchmark the performance of LION in perceptually-degraded subterranean environments, demonstrating its high technology readiness level for deployment in the field.

Video: https://youtu.be/Jd-sqBioarI

This research work was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

A. Tagliabue, J. Tordesillas and X. Cai—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agha, A., Mitchell, K.L., Boston, P.: Robotic exploration of planetary subsurface voids in search for life. AGU Fall Meet. Abs. 2019, P41C–3463 (2019)

    Google Scholar 

  2. Team costar. https://costar.jpl.nasa.gov/. Accessed 29 June 2020

  3. Darpa subterranean challenge. https://subtchallenge.com/. Accessed 29 June 2020

  4. Santamaria-Navarro, A., Thakker, R., Fan, D.D., Morrell, B., Agha-mohammadi, A.-A.: Towards resilient autonomous navigation of drones. In: The International Symposium on Robotics Research (2019)

    Google Scholar 

  5. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct EKF-based approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2015, pp. 298–304. IEEE (2015)

    Google Scholar 

  6. Qin, T., Li, P., Shen, S.: Vins-mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  7. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  8. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: svo: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Rob. 33(2), 249–265 (2016)

    Article  Google Scholar 

  9. Neumann, T., Ferrein, A., Kallweit, S., Scholl, I.: Towards a mobile mapping robot for underground mines. In: Proceedings of the 2014 PRASA, RobMech and AfLaT International Joint Symposium, Cape Town, South Africa, pp. 27–28 (2014)

    Google Scholar 

  10. Papachristos, C., Khattak, S., Mascarich, F., Alexis, K.: Autonomous navigation and mapping in underground mines using aerial robots. In: IEEE Aerospace Conference, vol. 2019, pp. 1–8. IEEE (2019)

    Google Scholar 

  11. Besl, P.J., McKay, N.D.: Method for registration of 3D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  12. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  13. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

  14. Magnusson, M., Lilienthal, A., Duckett, T.: Scan registration for autonomous mining vehicles using 3D-ndt. J. Field Rob. 24(10), 803–827 (2007)

    Article  Google Scholar 

  15. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on real-world data sets. Auton. Rob. 34(3), 133–148 (2013)

    Article  Google Scholar 

  16. Shan, T., Englot, B.: LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: IROS 2018 International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765. IEEE (2018)

    Google Scholar 

  17. Ye, H., Chen, Y., Liu, M.: Tightly coupled 3D lidar inertial odometry and mapping. arXiv preprint arXiv:1904.06993 (2019)

  18. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, p. 9 (2014)

    Google Scholar 

  19. Qin, C., Ye, H., Pranata, C.E., Han, J., Zhang, S., Liu, M.: LINS: a lidar-inertial state estimator for robust and efficient navigation. arXiv preprint arXiv:1907.02233 (2019)

  20. Hemann, G., Singh, S., Kaess, M.: Long-range GPS-denied aerial inertial navigation with lidar localization. In: IROS 2016 International Conference on Intelligent Robots and Systems (IROS), pp. 1659–1666. IEEE (2016)

    Google Scholar 

  21. Lin, J., Zhang, F.: Loam_livox: a fast, robust, high-precision lidar odometry and mapping package for lidars of small fov. arXiv preprint arXiv:1909.06700 (2019)

  22. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. Georgia Institute of Technology (2015)

    Google Scholar 

  23. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically stable sampling for the ICP algorithm. In: Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings, pp. 260–267. IEEE (2003)

    Google Scholar 

  24. Zhang, J., Kaess, M., Singh, S.: On degeneracy of optimization-based state estimation problems. In: ICRA on Robotics and Automation (ICRA), vol. 2016, pp. 809–816. IEEE (2016)

    Google Scholar 

  25. Censi, A.: An accurate closed-form estimate of ICP’s covariance. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2007, pp. 3167–3172. IEEE (2007)

    Google Scholar 

  26. Zhang, J., Singh, S.: Enabling aggressive motion estimation at low-drift and accurate mapping in real-time. In: ICRA 2017 Conference on Robotics and Automation (ICRA), pp. 5051–5058. IEEE (2017)

    Google Scholar 

  27. Hinduja, A., Ho, B.-J., Kaess, M.: Degeneracy-aware factors with applications to underwater slam. In: IROS, pp. 1293–1299 (2019)

    Google Scholar 

  28. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: incremental smoothing and mapping using the bayes tree. Int. J. Rob. Res. 31(2), 216–235 (2012)

    Article  Google Scholar 

  29. Dellaert, F.: Factor graphs and gtsam: A hands-on introduction. Technical report. Georgia Institute of Technology (2012)

    Google Scholar 

  30. Thakker, R., Alatur, N., Fan, D.D., Tordesillas, J., Paton, M., Otsu, K., Agha-mohammadi, A.-A.: Autonomous traverse of off-road extreme terrains in dark and dust: an experimental perspective on physical mobile robots. In: ISER (2020)

    Google Scholar 

  31. Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: Robotics: Science and Systems, vol. 2, no. 4, p. 435. Seattle, WA (2009)

    Google Scholar 

  32. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration theory for fast and accurate visual-inertial navigation. IEEE Transactions on Robotics, pp. 1–18 (2015)

    Google Scholar 

  33. Palieri, M., Morrell, B., Thakur, A., Ebadi, K., Nash, J., Carlone, L., Guaragnella, C., Agha-mohammadi, A.: Locus-a multi-sensor lidar-centric solution for high-precision odometry and 3D mapping in real-time. Under Review (2020)

    Google Scholar 

  34. Bonnabel, S., Barczyk, M., Goulette, F.: On the covariance of ICP-based scan-matching techniques. In: American Control Conference (ACC), vol. 2016, pp. 5498–5503. IEEE (2016)

    Google Scholar 

  35. Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hatteland, A., Heiden, E., Thakur, A., Morrell, B., Carlone, L., Aghamohammadi, A.: LAMP: large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments. In: ICRA 2020 International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  36. Le Gentil, C., Vidal-Calleja, T., Huang, S.: 3D lidar-imu calibration based on upsampled preintegrated measurements for motion distortion correction. In: ICRA Automation (ICRA), vol. 2018, pp. 2149–2155. IEEE (2018)

    Google Scholar 

  37. Della Corte, B., Andreasson, H., Stoyanov, T., Grisetti, G.: Unified motion-based calibration of mobile multi-sensor platforms with time delay estimation. In: IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 902–909 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kasra Khosoussi (ACL-MIT), Benjamin Morrell (JPL) and Kamak Ebadi (JPL) for helpful insights and discussions. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tagliabue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tagliabue, A. et al. (2021). LION: Lidar-Inertial Observability-Aware Navigator for Vision-Denied Environments. In: Siciliano, B., Laschi, C., Khatib, O. (eds) Experimental Robotics. ISER 2020. Springer Proceedings in Advanced Robotics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-71151-1_34

Download citation

Publish with us

Policies and ethics