Skip to main content

Cognitive Map Query Language for Temporal Domains

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12613))

Included in the following conference series:

  • 735 Accesses

Abstract

This article introduces the temporal cognitive maps model and its associated query language.

A cognitive map is a graph used to model strategies or influence systems. Each node represents a concept and each edge represents an influence.

One limit of cognitive maps is that temporal features cannot be taken account in the model.

This article proposes an extended model of cognitive map, called temporal cognitive maps, that includes temporal features in a cognitive map.

This article also proposes a temporal cognitive map query language that accesses all the components of a temporal cognitive map: concept, influence and temporal features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    VSPCC [19] has been implemented after the thesis of Aymeric LeDorze [17], for the project Kifanlo.

  2. 2.

    This work is being led in the project Analyse Cognitive de Savoirs (ACS) granted by the french region Pays de la Loire from 2017 to 2020.

  3. 3.

    A set of temporal cognitive maps based on the same taxonomy, value set and temporal ontology will be considered. Since many maps may contain nodes labeled by the same concept, the following notation is used: The periodic interval associated with a node labeled by a concept ‘c’ of a map ‘m’ is noted ‘\(m\_c\)’.

References

  1. Axelrod, R.M.: Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, Princeton (1976)

    Google Scholar 

  2. Balbiani, P., Osmani, A.: A model for reasoning about topologic relations between cyclic intervals. In: Principles of Knowledge Representation and Reasoning, pp. 378–385 (2000)

    Google Scholar 

  3. Carvalho, J.P., Tome, J.A.B.: Rule based fuzzy cognitive maps-expressing time in qualitative system dynamics. In: 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 280–283. IEEE (2001)

    Google Scholar 

  4. Çelik, F.D., Ozesmi, U., Akdogan, A.: Participatory ecosystem management planning at Tuzla lake (Turkey) using fuzzy cognitive mapping. arXiv preprint q-bio/0510015 (2005)

    Google Scholar 

  5. Chauvin, L., Genest, D., Loiseau, S.: Ontological cognitive map. Int. J. Artif. Intell. Tools 18(05), 697–716 (2009)

    Article  Google Scholar 

  6. Codd, E.F.: The Relational Model for Database Management: Version 2. Addison-Wesley Longman Publishing Co. Inc., Boston (1990)

    MATH  Google Scholar 

  7. Ermolayev, V., Batsakis, S., Keberle, N., Tatarintseva, O., Antoniou, G.: Ontologies of time: review and trends. Int. J. Comput. Sci. Appl. 11(3), 57–115 (2014)

    Google Scholar 

  8. Ermolayev, V., Keberle, N., Matzke, W.-E., Sohnius, R.: Fuzzy time intervals for simulating actions. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) UNISCON 2008. LNBIP, vol. 5, pp. 429–444. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78942-0_42

    Chapter  Google Scholar 

  9. Francis, N., et al.: Cypher: an evolving query language for property graphs. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD 2018, pp. 1433–1445. Association for Computing Machinery (2018)

    Google Scholar 

  10. Genest, D., Loiseau, S.: Modélisation, classification et propagation dans des réseaux d’influence. Technique et Science Informatiques 26, 471–496 (2007)

    Google Scholar 

  11. Harris, S., Seaborne, A., Prud’Hommeaux, E.: SPARQL 1.1 Query Language. W3C recommendation (2013)

    Google Scholar 

  12. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer. W3C recommendation (2009)

    Google Scholar 

  13. Hobbs, J.R., Pan, F.: Time ontology in OWL. W3C Candidate Recommendation (2020). https://www.w3.org/TR/owl-time/

  14. International Organization for Standardization: ISO IEC 9075:2016: Information Technology - Database languages SQL. ISO, Geneva, Switzerland (2016)

    Google Scholar 

  15. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24, 65–75 (1986)

    Article  Google Scholar 

  16. Ladkin, P.B.: Time representation: a taxonomy of internal relations. In: AAAI, pp. 360–366 (1986)

    Google Scholar 

  17. Le Dorze, A.: Validation, synthèse et paramétrage des cartes cognitives. Ph.D. thesis, LERIA, Université d’Angers, France, November 2013

    Google Scholar 

  18. Le Dorze, A., Chauvin, L., Garcia, L., Genest, D., Loiseau, S.: Views and synthesis of cognitive maps. In: Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS (LNAI), vol. 7557, pp. 119–124. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33185-5_13

    Chapter  Google Scholar 

  19. LeDorze, A., Robert, A.: https://sourcesup.renater.fr/projects/vspcc (2016)

  20. Louis, G., Pirotte, A.: A denotational definition of the semantics of DRC, a domain relational calculus. In: VLDB, pp. 348–356 (1982)

    Google Scholar 

  21. Martin, B.L., Mintzes, J.J., Clavijo, I.E.: Restructuring knowledge in biology: cognitive processes and metacognitive reflections. Int. J. Sci. Educ. 22(3), 303–323 (2000)

    Article  Google Scholar 

  22. Osmani, A.: Introduction to reasoning about cyclic intervals. In: Imam, I., Kodratoff, Y., El-Dessouki, A., Ali, M. (eds.) IEA/AIE 1999. LNCS (LNAI), vol. 1611, pp. 698–706. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48765-4_74

    Chapter  Google Scholar 

  23. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier, Amsterdam (2014)

    Google Scholar 

  24. Robert, A.: (2019). http://www.info.univ-angers.fr/pub/adrian/rules/rules.html

  25. Robert, A., Genest, D., Loiseau, S.: A query language for cognitive maps. In: Agre, G., van Genabith, J., Declerck, T. (eds.) AIMSA 2018. LNCS (LNAI), vol. 11089, pp. 218–227. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99344-7_20

    Chapter  Google Scholar 

  26. Robert, A., Genest, D., Loiseau, S.: The taxonomic cognitive map query language: a general approach to analyse cognitive maps. In: 30th ICTAI, pp. 999–1006. IEEE (2019)

    Google Scholar 

  27. Robert, A., Genest, D., Loiseau, S.: Temporal cognitive maps. In: Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020), vol. 2, pp. 58–68. INSTICC, SciTePress (2020)

    Google Scholar 

  28. Röhrig, R.: A theory for qualitative spatial reasoning based on order relations. In: Proceedings of the Twelfth AAAI National Conference on Artificial Intelligence, AAAI 1994, pp. 1418–1423. AAAI Press (1994)

    Google Scholar 

  29. Zhong, H., Miao, C., Shen, Z., Feng, Y.: Temporal fuzzy cognitive maps. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1831–1840. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Genest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robert, A., Genest, D., Loiseau, S. (2021). Cognitive Map Query Language for Temporal Domains. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2020. Lecture Notes in Computer Science(), vol 12613. Springer, Cham. https://doi.org/10.1007/978-3-030-71158-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71158-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71157-3

  • Online ISBN: 978-3-030-71158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics