Skip to main content

Reducing the Need for Manual Annotated Datasets in Aspect Sentiment Classification by Transfer Learning and Weak-Supervision

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2020)

Abstract

Users’ opinions can be greatly beneficial in developing and providing products and services and improving marketing techniques for customer recommendation and retention. For this reason, sentiment analysis algorithms that automatically extract sentiment information from customers’ reviews are receiving growing attention from the computer science community. Aspect-based sentiment analysis (ABSA) allows for a more detailed understanding of customer opinions because it enables extracting sentiment polarities along with the sentiment target from sentences. ABSA consists of two steps: Aspect Extraction (AE) that allows recognizing the target sentiment; Aspect Sentiment Classification (ASC) that enables to classify the sentiment polarity. Currently, most diffused sentiment analysis algorithms are based on deep learning. Such algorithms require large labeled datasets that are extremely expensive and time consuming to build. In this paper, we present two approaches based on transfer learning and weak supervision, respectively. Both have the goal of reducing the manual effort needed to build annotated datasets for the ASC problem. In the paper, we describe the two approaches and experimentally compare them.

This work was supported by Horizon 2020 - Asse I – PON I&C 2014–2020 FESR - Fondo per la Crescita Sostenibile - Sportello Fabbrica Intelligente DM 05/03/2018 – DD 20/11/2018. “Validated Question Answering” Project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.yelp.com/dataset/challenge.

  2. 2.

    In [14] the addressed task is a bit different from ASC: the authors classify entity-attribute pair, where entity and attribute belong to predefined lists, e.g. food, price, location for entity and food-price, food-quality for attribute.

  3. 3.

    https://textblob.readthedocs.io/.

  4. 4.

    https://www.clips.uantwerpen.be/pages/pattern-en/.

  5. 5.

    https://www.yelp.com/dataset.

References

  1. Abdul-Mageed, M., Ungar, L.: EmoNet: fine-grained emotion detection with gated recurrent neural networks. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics: Volume 1, Long Papers, vol. 1, pp. 718–728 (2017)

    Google Scholar 

  2. Al-Moslmi, T., Omar, N., Abdullah, S., Albared, M.: Approaches to cross-domain sentiment analysis: a systematic literature review. IEEE Access 5, 16173–16192 (2017)

    Article  Google Scholar 

  3. Bach, S.H., et al.: Snorkel drybell: a case study in deploying weak supervision at industrial scale. In: Proceedings of the 2019 International Conference on Management of Data, pp. 362–375. ACM (2019)

    Google Scholar 

  4. Balazs, J.A., Velásquez, J.D.: Opinion mining and information fusion: a survey. Inf. Fusion 27, 95–110 (2016)

    Article  Google Scholar 

  5. Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL on Interactive presentation sessions, pp. 69–72. Association for Computational Linguistics (2006)

    Google Scholar 

  6. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 440–447 (2007)

    Google Scholar 

  7. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  8. Borele, P., Borikar, D.A.: A survey on evaluating sentiments by using artificial neural network (2016)

    Google Scholar 

  9. Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory for aspect sentiment analysis. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 452–461 (2017)

    Google Scholar 

  10. Deng, L., Wiebe, J.: MPQA 3.0: an entity/event-level sentiment corpus. In: HLT-NAACL, pp. 1323–1328 (2015)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  12. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: Volume 2, Short Papers, vol. 2, pp. 49–54 (2014)

    Google Scholar 

  13. García-Pablos, A., Cuadros, M., Rigau, G.: V3: unsupervised generation of domain aspect terms for aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 833–837 (2014)

    Google Scholar 

  14. Garcia-Pablos, A., Cuadros, M., Rigau, G.: V3: unsupervised aspect based sentiment analysis for SemEval2015 task 12. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 714–718 (2015)

    Google Scholar 

  15. García-Pablos, A., Cuadros, M., Rigau, G.: W2VLDA: almost unsupervised system for aspect based sentiment analysis. Expert Syst. Appl. 91, 127–137 (2018)

    Article  Google Scholar 

  16. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12) (2009)

    Google Scholar 

  17. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of the 25th International Conference on World Wide Web, pp. 507–517 (2016)

    Google Scholar 

  18. Hltcoe, J.: SemEval-2013 task 2: sentiment analysis in twitter, Atlanta, Georgia, USA, p. 312 (2013)

    Google Scholar 

  19. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)

    Google Scholar 

  20. Hussein, D.M.E.D.M.: A survey on sentiment analysis challenges. J. King Saud Univ. Eng. Sci. 30(4), 330–338 (2016)

    Google Scholar 

  21. Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: Advances in Neural Information Processing Systems, pp. 2096–2104 (2014)

    Google Scholar 

  22. Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 815–824. ACM (2011)

    Google Scholar 

  23. Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions. arXiv preprint arXiv:1606.04155 (2016)

  24. Li, C., Guo, X., Mei, Q.: Deep memory networks for attitude identification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 671–680. ACM (2017)

    Google Scholar 

  25. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  26. Liu, J., Zhang, Y.: Attention modeling for targeted sentiment. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, vol. 2, pp. 572–577 (2017)

    Google Scholar 

  27. Liu, P., Joty, S., Meng, H.: Fine-grained opinion mining with recurrent neural networks and word embeddings. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1433–1443 (2015)

    Google Scholar 

  28. Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. arXiv preprint arXiv:1709.00893 (2017)

  29. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150. Association for Computational Linguistics (2011)

    Google Scholar 

  30. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  31. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  32. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  33. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  34. Oro, E., Pizzuti, C., Procopio, N., Ruffolo, M.: Detecting topic authoritative social media users: a multilayer network approach. IEEE Trans. Multimedia 20(5), 1195–1208 (2017)

    Article  Google Scholar 

  35. Oro, E., Pizzuti, C., Ruffolo, M.: A methodology for identifying influencers and their products perception on twitter. In: ICEIS (2018)

    Google Scholar 

  36. Oro, E., Ruffolo, M., Pupo, F.: A cognitive automation approach for a smart lending and early warning application. In: Poulovassilis, A., et al. (eds.) Proceedings of the Workshops of the EDBT/ICDT 2020 Joint Conference, Copenhagen, Denmark, March 30, 2020. CEUR Workshop Proceedings, vol. 2578. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2578/DARLIAP6.pdf

  37. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271. Association for Computational Linguistics (2004)

    Google Scholar 

  38. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124. Association for Computational Linguistics (2005)

    Google Scholar 

  39. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  40. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on Empirical Methods in Natural Language Processing-Volume 10, pp. 79–86. Association for Computational Linguistics (2002)

    Google Scholar 

  41. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP 14, 1532–1543 (2014)

    Google Scholar 

  42. Pereg, O., Korat, D., Wasserblat, M., Mamou, J., Dagan, I.: ABSApp: a portable weakly-supervised aspect-based sentiment extraction system. arXiv preprint arXiv:1909.05608 (2019)

  43. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)

    Google Scholar 

  44. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aaspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495 (2015)

    Google Scholar 

  45. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35. Association for Computational Linguistics, Dublin, Ireland (2014). https://doi.org/10.3115/v1/S14-2004

  46. Poria, S., Hazarika, D., Majumder, N., Mihalcea, R.: Beneath the tip of the iceberg: Current challenges and new directions in sentiment analysis research. arXiv preprint arXiv:2005.00357 (2020)

  47. Purpura, A., Masiero, C., Susto, G.A.: WS4ABSA: an NMF-based weakly-supervised approach for aspect-based sentiment analysis with application to online reviews. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds.) Discovery Science. Lecture Notes in Computer Science, vol. 11198, pp. 386–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01771-2_25

    Chapter  Google Scholar 

  48. Qiu, G., Liu, B., Bu, J., Chen, C.: Expanding domain sentiment lexicon through double propagation. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)

    Google Scholar 

  49. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

    Article  Google Scholar 

  50. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100, 000+ questions for machine comprehension of text. In: EMNLP (2016)

    Google Scholar 

  51. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid training data creation with weak supervision. Proc. VLDB Endow. 11(3), 269–282 (2017)

    Article  Google Scholar 

  52. Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., Ré, C.: Data programming: creating large training sets, quickly. In: Advances in Neural Information Processing Systems, pp. 3567–3575 (2016)

    Google Scholar 

  53. Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl.-Based Syst. 89, 14–46 (2015)

    Article  Google Scholar 

  54. Rietzler, A., Stabinger, S., Opitz, P., Engl, S.: Adapt or get left behind: domain adaptation through bert language model finetuning for aspect-target sentiment classification. arXiv preprint arXiv:1908.11860 (2019)

  55. Rogers, A., Kovaleva, O., Rumshisky, A.: A primer in bertology: what we know about how bert works. arXiv preprint arXiv:2002.12327 (2020)

  56. Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 502–518 (2017)

    Google Scholar 

  57. Ruder, S.: Neural transfer learning for natural language processing. Ph.D. thesis, NUI Galway (2019)

    Google Scholar 

  58. Ruder, S., Ghaffari, P., Breslin, J.G.: A hierarchical model of reviews for aspect-based sentiment analysis. arXiv preprint arXiv:1609.02745 (2016)

  59. Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural language processing. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials, pp. 15–18 (2019)

    Google Scholar 

  60. Ruffolo, M., Visalli, F.: A weak-supervision method for automating training set creation in multi-domain aspect sentiment classification. In: ICAART (2020)

    Google Scholar 

  61. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP), vol. 1631, p. 1642. Citeseer (2013)

    Google Scholar 

  62. Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.F., Pantic, M.: A survey of multimodal sentiment analysis. Image Vis. Comput. 65, 3–14 (2017)

    Article  Google Scholar 

  63. Tang, D., Qin, B., Feng, X., Liu, T.: Effective lstms for target-dependent sentiment classification. arXiv preprint arXiv:1512.01100 (2015)

  64. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network. arXiv preprint arXiv:1605.08900 (2016)

  65. Tay, Y., Tuan, L.A., Hui, S.C.: Dyadic memory networks for aspect-based sentiment analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 107–116. ACM (2017)

    Google Scholar 

  66. Van Kleef, E., Van Trijp, H.C., Luning, P.: Consumer research in the early stages of new product development: a critical review of methods and techniques. Food Qual. Prefer. 16(3), 181–201 (2005)

    Article  Google Scholar 

  67. Vaswani, A.,et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  68. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  69. Vo, D.T., Zhang, Y.: Target-dependent twitter sentiment classification with rich automatic features. In: IJCAI, pp. 1347–1353 (2015)

    Google Scholar 

  70. Wang, W., Pan, S.J.: Recursive neural structural correspondence network for cross-domain aspect and opinion co-extraction. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 2171–2181 (2018)

    Google Scholar 

  71. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. arXiv preprint arXiv:1603.06679 (2016)

  72. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In: AAAI, pp. 3316–3322 (2017)

    Google Scholar 

  73. Wang, Y., Huang, M., Zhao, L., et al.: Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 (2016)

    Google Scholar 

  74. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2), 165–210 (2005)

    Article  Google Scholar 

  75. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  76. Xu, H., Liu, B., Shu, L., Yu, P.S.: Bert post-training for review reading comprehension and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232 (2019)

  77. Yang, B., Cardie, C.: Extracting opinion expressions with semi-markov conditional random fields. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1335–1345. Association for Computational Linguistics (2012)

    Google Scholar 

  78. Yang, M., Tu, W., Wang, J., Xu, F., Chen, X.: Attention based LSTM for target dependent sentiment classification. In: AAAI, pp. 5013–5014 (2017)

    Google Scholar 

  79. Ying, D., Yu, J., Jiang, J.: Recurrent neural networks with auxiliary labels for cross-domain opinion target extraction (2017)

    Google Scholar 

  80. Zagibalov, T., Carroll, J.: Automatic seed word selection for unsupervised sentiment classification of Chinese text. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 1073–1080. Association for Computational Linguistics (2008)

    Google Scholar 

  81. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Data Mining and Knowledge Discovery. Wiley Interdisciplinary Reviews. Wiley, Hoboken, New Jersey (2018)

    Google Scholar 

  82. Zhang, M., Zhang, Y., Vo, D.T.: Neural networks for open domain targeted sentiment. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 612–621 (2015)

    Google Scholar 

  83. Zhu, X., Guo, H., Sobhani, P.: Neural networks for integrating compositional and non-compositional sentiment in sentiment composition. In: Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics, pp. 1–9 (2015)

    Google Scholar 

  84. Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S.: Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19–27 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermelinda Oro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oro, E., Ruffolo, M., Visalli, F. (2021). Reducing the Need for Manual Annotated Datasets in Aspect Sentiment Classification by Transfer Learning and Weak-Supervision. In: Rocha, A.P., Steels, L., van den Herik, J. (eds) Agents and Artificial Intelligence. ICAART 2020. Lecture Notes in Computer Science(), vol 12613. Springer, Cham. https://doi.org/10.1007/978-3-030-71158-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71158-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71157-3

  • Online ISBN: 978-3-030-71158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics