Skip to main content

Graph Matching in Graph-Oriented Databases

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1351))

  • 2088 Accesses

Abstract

Modern graph database management systems use graph structures for semantic queries with nodes, edges, and properties to connect to and store information. Due to their schema-less nature, inappropriate data migration and manipulation can lead to severe data loss during the data query process. Data migration in graph databases strongly depends on graph matching methods to detect similar entities. This article describes a graph matching mechanism based on similarity measures to efficiently migrate data and avoid data loss within the different entities of the graph database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbes, H., Gargouri, F.: Modular ontologies composition: Levenshtein-distance-based concepts structure comparison. Int. J. Inf. Technol. Web Eng. (IJITWE) 13(4), 35–60 (2018)

    Article  Google Scholar 

  2. Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL world. Comput. Stan. Interfaces 67, 103149 (2020)

    Article  Google Scholar 

  3. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema validation and evolution for graph databases. In: International Conference on Conceptual Modeling, pp. 448–456. Springer (2019)

    Google Scholar 

  4. Boukettaya, S., Nabli, A., Gargouri, F.: Towards the evolution of graph oriented databases. In: International Conference on Intelligent Systems Design and Applications, pp. 392–399. Springer (2018)

    Google Scholar 

  5. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: KDD Workshop on Data Cleaning and Object Consolidation, vol. 3, pp. 73–78 (2003)

    Google Scholar 

  6. Herrmann, K., Voigt, H., Behrend, A., Rausch, J., Lehner, W.: Living in parallel realities: co-existing schema versions with a bidirectional database evolution language. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1101–1116 (2017)

    Google Scholar 

  7. Herrmann, K., Voigt, H., Rausch, J., Behrend, A., Lehner, W.: Robust and simple database evolution. Inf. Syst. Front. 20(1), 45–61 (2018)

    Article  Google Scholar 

  8. Iosup, A., Hegeman, T., Ngai, W.L., Heldens, S., Prat-Pérez, A., Manhardto, T., Chafio, H., Capotă, M., Sundaram, N., Anderson, M., et al.: LDBC graphalytics: a benchmark for large-scale graph analysis on parallel and distributed platforms. Proc. VLDB Endow. 9(13), 1317–1328 (2016)

    Article  Google Scholar 

  9. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  10. Mesiti, M., Celle, R., Sorrenti, M.A., Guerrini, G.: X-evolution: a system for xml schema evolution and document adaptation. In: International Conference on Extending Database Technology, pp. 1143–1146. Springer (2006)

    Google Scholar 

  11. Scherzinger, S., de Almeida, E.C., Cerqueus, T., de Almeida, L.B., Holanda, P.: Finding and fixing type mismatches in the evolution of object-NoSQL mappings. In: EDBT/ICDT Workshops (2016)

    Google Scholar 

  12. Scherzinger, S., Cerqueus, T., de Almeida, E.C.: ControVol: a framework for controlled schema evolution in NoSQL application development. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 1464–1467. IEEE (2015)

    Google Scholar 

  13. Scherzinger, S., Sidortschuck, S.: An empirical study on the design and evolution of NoSQL database schemas. arXiv preprint arXiv:2003.00054 (2020)

  14. Boukettaya, S., Ahlem Nabli, F.G.: Vers l’évolution des bases de données orientées graphes: opérations d’évolution. In: Big data & Applications, ASD 2018, pp. 557–569. ASD (May 2018)

    Google Scholar 

  15. Störl, U., Klettke, M., Scherzinger, S.: NoSQL schema evolution and data migration: state-of-the-art and opportunities. In: EDBT, pp. 655–658 (2020)

    Google Scholar 

  16. Vijaymeena, M., Kavitha, K.: A survey on similarity measures in text mining. Mach. Learn. Appl. Int. J. 3(2), 19–28 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boukettaya, S., Nabli, A., Gargouri, F. (2021). Graph Matching in Graph-Oriented Databases. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Applications. ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. https://doi.org/10.1007/978-3-030-71187-0_72

Download citation

Publish with us

Policies and ethics