Skip to main content

Fuzzy-Probabilistic Approach for Dense Wireless Sensor Network

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2020)

Abstract

The deformations of the scalar field of an appropriate physical variable can indicate significant events such as the presence of a vehicle, the occurrence of a firing or the movement of soldiers in a region. It is considered the scenario of continuous monitoring of a scalar field by a Sensor Network in applications that require very limited nodes in power, processing, communication and storage capacities. In this scenario, typical in some military applications in a hostile environment that requires discretion of the presence of the nodes, the extension of the useful life of the network via energy saving becomes even more critical. The need for discretion implies reducing the physical dimensions of the node and thus also the size of the battery. The paper proposes a decentralized low processing strategy to suppress sensing and transmission of messages and evaluates the trade off between transmitted messages reduction versus accuracy of scalar field reconstruction. Your results can be used to tune applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ulb.ac.be/di/labo/code/PCAgExpe.zip.

References

  1. Arjun, D., Indukala, P., Menon, K.U.: Border surveillance and intruder detection using wireless sensor networks: a brief survey. In: 2017 International Conference on Communication and Signal Processing (ICCSP), pp. 1125–1130. IEEE (2017)

    Google Scholar 

  2. Ball, M.G., Qela, B., Wesolkowski, S.: A review of the use of computational intelligence in the design of military surveillance networks. In: Recent Advances in Computational Intelligence in Defense and Security, pp. 663–693. Springer (2016)

    Google Scholar 

  3. Bapat, V., Kale, P., Shinde, V., Deshpande, N., Shaligram, A.: WSN application for crop protection to divert animal intrusions in the agricultural land. Comput. Electron. Agric. 133, 88–96 (2017)

    Article  Google Scholar 

  4. Chang, C.Y., Hsiao, C.Y., Yang, M.H., Wang, S.S.: Surveillance algorithms for barrier coverage in wireless camera sensor networks. In: 2018 International Conference on Electronics Technology (ICET), pp. 111–115. IEEE (2018)

    Google Scholar 

  5. Dardari, D., Conti, A., Buratti, C., Verdone, R.: Mathematical evaluation of environmental monitoring estimation error through energy-efficient wireless sensor networks. IEEE Trans. Mob. Comput. 6(7), 790–802 (2007)

    Article  Google Scholar 

  6. Deligiannakis, A., Kotidis, Y.: Exploiting spatio-temporal correlations for data processing in sensor networks. In: International Conference on GeoSensor Networks, pp. 45–65. Springer (2006)

    Google Scholar 

  7. Diwakaran, S., Perumal, B., Devi, K.V.: A cluster prediction model-based data collection for energy efficient wireless sensor network. J. Supercomput. 75(6), 3302–3316 (2019)

    Article  Google Scholar 

  8. Ghate, V.V., Vijayakumar, V.: Machine learning for data aggregation in WSN: a survey. Int. J. Pure Appl. Math. 118(24), 1–12 (2018)

    Google Scholar 

  9. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc., Upper Saddle River (2007)

    Google Scholar 

  10. Jaigirdar, F.T., Islam, M.M.: A new cost-effective approach for battlefield surveillance in wireless sensor networks. In: 2016 International Conference on Networking Systems and Security (NSysS), pp. 1–6. IEEE (2016)

    Google Scholar 

  11. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence (1997)

    Google Scholar 

  12. Jawhar, I., Mohamed, N., Agrawal, D.: A hierarchical wireless sensor network design for monitoring a pipeline infrastructure. In: Industrial Wireless Sensor Networks, pp. 189–211. Elsevier (2016)

    Google Scholar 

  13. Jawhar, I., Mohamed, N., Agrawal, D.P.: Linear wireless sensor networks: classification and applications. J. Netw. Comput. Appl. 34(5), 1671–1682 (2011)

    Article  Google Scholar 

  14. Khan, J.A., Qureshi, H.K., Iqbal, A.: Energy management in wireless sensor networks: a survey. Comput. Electr. Eng. 41, 159–176 (2015)

    Article  Google Scholar 

  15. Le Borgne, Y.A., Dricot, J.M., Bontempi, G.: Principal component aggregation for energy efficient information extraction in wireless sensor networks. In: Knowledge Discovery from Sensor Data (2007)

    Google Scholar 

  16. Maia, J.E.B., Brayner, A., Rodrigues, F.: A framework for processing complex queries in wireless sensor networks. ACM SIGAPP Appl. Comput. Rev. 13(2), 30–41 (2013)

    Article  Google Scholar 

  17. Matos, T.B., Brayner, A., Maia, J.E.B.: Towards in-network data prediction in wireless sensor networks. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 592–596. ACM (2010)

    Google Scholar 

  18. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. In: Approximation Theory and Spline Functions, pp. 143–145. Springer (1984)

    Google Scholar 

  19. Minhas, U.I., Naqvi, I.H., Qaisar, S., Ali, K., Shahid, S., Aslam, M.A.: A WSN for monitoring and event reporting in underground mine environments. IEEE Syst. J. 12(1), 485–496 (2018)

    Article  Google Scholar 

  20. Mois, G., Folea, S., Sanislav, T.: Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans. Instrum. Meas. 66(8), 2056–2064 (2017)

    Article  Google Scholar 

  21. Rault, T., Bouabdallah, A., Challal, Y.: Energy efficiency in wireless sensor networks: a top-down survey. Comput. Netw. 67, 104–122 (2014)

    Article  Google Scholar 

  22. Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wirel. Commun. 11(6), 54–61 (2004)

    Article  Google Scholar 

  23. Vaidyanathan, P.: The theory of linear prediction. Synthesis Lectures on Signal Processing, vol. 2, no. 1, pp. 1–184 (2007)

    Google Scholar 

  24. Watthanawisuth, N., Tuantranont, A., Kerdcharoen, T.: Design for the next generation of wireless sensor networks in battlefield based on Zigbee. In: Defense Science Research Conference and Expo (DSR) 2011, pp. 1–4. IEEE (2011)

    Google Scholar 

  25. Webb, A.R.: Statistical Pattern Recognition. Wiley, Hoboken (2003)

    Google Scholar 

  26. Winkler, M., Tuchs, K.D., Hughes, K., Barclay, G.: Theoretical and practical aspects of military wireless sensor networks. J. Telecommun. Inf. Technol. 2, 37–45 (2008)

    Google Scholar 

  27. Zhang, B., Liu, Y., He, J., Zou, Z.: An energy efficient sampling method through joint linear regression and compressive sensing. In: 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 447–450. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunes, F.R.S., de S. Macêdo, C., do N. Soares, J., Cavalcante, H.G., Brilhante, M.Q.L., Maia, J.E.B. (2021). Fuzzy-Probabilistic Approach for Dense Wireless Sensor Network. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Applications. ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. https://doi.org/10.1007/978-3-030-71187-0_94

Download citation

Publish with us

Policies and ethics