Skip to main content

Towards Bounding-Box Free Panoptic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

  • 1374 Accesses

Abstract

In this work we introduce a new Bounding-Box Free Network (BBFNet) for panoptic segmentation. Panoptic segmentation is an ideal problem for proposal-free methods as it already requires per-pixel semantic class labels. We use this observation to exploit class boundaries from off-the-shelf semantic segmentation networks and refine them to predict instance labels. Towards this goal BBFNet predicts coarse watershed levels and uses them to detect large instance candidates where boundaries are well defined. For smaller instances, whose boundaries are less reliable, BBFNet also predicts instance centers by means of Hough voting followed by mean-shift to reliably detect small objects. A novel triplet loss network helps merging fragmented instances while refining boundary pixels. Our approach is distinct from previous works in panoptic segmentation that rely on a combination of a semantic segmentation network with a computationally costly instance segmentation network based on bounding box proposals, such as Mask R-CNN, to guide the prediction of instance labels using a Mixture-of-Expert (MoE) approach. We benchmark our proposal-free method on Cityscapes and Microsoft COCO datasets and show competitive performance with other MoE based approaches while outperforming existing non-proposal based methods on the COCO dataset. We show the flexibility of our method using different semantic segmentation backbones and provide video results on challenging scenes in the wild in the supplementary material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code available from https://github.com/uber-research/UPSNet.

References

  1. Arnab, A., Torr, P.H.: Pixelwise instance segmentation with a dynamically instantiated network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  2. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2858–2866 (2017)

    Google Scholar 

  3. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  Google Scholar 

  4. Brabandere, B.D., Neven, D., Gool, L.V.: Semantic instance segmentation with a discriminative loss function. arXiv preprint arXiv:1708.02551 (2017)

  5. Cheng, B., Collins, M., Zhu, Y., Liu, T., Huang, T., Adam, H., Chen, L.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  6. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Machine Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  7. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  10. Forsyth, D., et al.: Finding pictures of objects in large collections of images. In: International Workshop on Object Representation in Computer Vision (1996)

    Google Scholar 

  11. Gao, N., et al.: SSAP: single-shot instance segmentation with affinity pyramid. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  12. de Geus, D., Meletis, P., Dubbelman, G.: Fast panoptic segmentation network. arXiv preprint arXiv:1910.03892 (2019)

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  15. Keuper, M., Levinkov, E., Bonneel, N., Lavoue, G., Brox, T., Andres, B.: Efficient decomposition of image and mesh graphs by lifted multicuts. In: International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  16. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  17. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  18. Li, J., Raventos, A., Bhargava, A., Tagawa, T., Gaidon, A.: Learning to fuse things and stuff. arXiv preprint arXiv:1812.01192 (2019)

  19. Li, Q., Arnab, A., Torr, P.H.S.: Weakly- and semi-supervised panoptic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 106–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_7

    Chapter  Google Scholar 

  20. Li, Q., Qi, X., Torr, P.: Unifying training and inference for panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  21. Li, Y., et al.: Attention-guided unified network for panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  22. Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Neuhold, G., Ollmann, T., Bulò, S.R., Kontschieder, P.: The Mapillary Vistas dataset for semantic understanding of street scenes. In: International Conference on Computer Vision (ICCV) (2017). https://www.mapillary.com/dataset/vistas

  25. Neven, D., Brabandere, B.D., Proesmans, M., Gool, L.V.: Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  26. Neven, D., Brabandere, B.D., Georgoulis, S., Proesmans, M., Gool, L.V.: Fast scene understanding for autonomous driving. arXiv preprint arXiv:1708.02550 (2017)

  27. Porzi, L., Bulò, S.R., Colovic, A., Kontschieder, P.: Seamless scene segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  28. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  29. Romera, E., Álvarez, J.M., Bergasa, L.M., Arroyo, R.: ErfNet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19, 263–272 (2018)

    Article  Google Scholar 

  30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  31. Sofiiuk, K., Barinova, O., Konushin, A.: Adaptis: adaptive instance selection network. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  32. Tighe, J., Niethammer, M., Lazebnik, S.: Scene parsing with object instances and occlusion ordering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  33. Uhrig, J., Cordts, M., Franke, U., Brox, T.: Pixel-level encoding and depth layering for instance-level semantic labeling. In: German Conference on Pattern Recognition (GCPR) (2016)

    Google Scholar 

  34. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. (2009)

    Google Scholar 

  35. Xiong, Y., et al.: UPSNet: a unified panoptic segmentation network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  36. Yang, T., et al.: Deeperlab: single-shot image parser. arXiv preprint arXiv:1902.05093 (2019)

  37. Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: joint object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

Download references

Acknowledgment

We would like to thank Prof. Andrew Davison and Dr. Alexandre Morgand for their critical feedback during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujwal Bonde .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13593 KB)

Supplementary material 2 (mp4 25265 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonde, U., Alcantarilla, P.F., Leutenegger, S. (2021). Towards Bounding-Box Free Panoptic Segmentation. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics