Skip to main content

Evaluating an mHealth Application: Findings on Visualizing Transportation and Air Quality

  • Conference paper
  • First Online:
Diversity, Divergence, Dialogue (iConference 2021)

Abstract

This paper presents the results of a usability study conducted to evaluate an mHealth application that integrates information about transportation options and air quality levels. By visualizing the air quality levels along the transportation routes available, the users of the mHealth application proposed can make more informed choices before departure. The mHealth application aims to help users take appropriate safety precautions beforehand. The results obtained with the user study indicate that the familiar layout of the application led to a high sentiment score and usability ratings of system usability scale. The option to select the least polluted route to travel was perceived as original and useful to the participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aqi basics. https://airnow.gov/index.cfm?action=aqibasics.aqi

  2. Agency, U.S.E.P.: Particulate matter (pm) basics (2017)

    Google Scholar 

  3. Anderson, J.O., Thundiyil, J.G., Stolbach, A.: Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8(2), 166–175 (2012)

    Article  Google Scholar 

  4. AppGrooves: Best 10 apps for air quality alerts - appgrooves: Get more out of life with iphone and android apps (2019). https://appgrooves.com/rank/weather/air-quality/best-apps-for-air-quality-alerts. Accessed 19 Sept 2019

  5. Banga, C., Weinhold, J.: Essential Mobile Interaction Design: Perfecting Interface Design in Mobile Apps. Pearson Education (2014)

    Google Scholar 

  6. Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F.: Hospital admissions and chemical composition of fine particle air pollution. Am. J. Respiratory Critical Care Med. 179(12), 1115–1120 (2009)

    Article  Google Scholar 

  7. Brooke, J.: Sus: a quick and dirty usability. Usability Evaluation in Industry, p. 189 (1996)

    Google Scholar 

  8. Chu, K.C., Xiao, M.Y.: A study on the correlation between breast cancer and air pollution. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 757–762. ACM (2017)

    Google Scholar 

  9. Garzon, S.R., Walther, S., Pang, S., Deva, B., Küpper, A.: Urban air pollution alert service for smart cities. In: Proceedings of the 8th International Conference on the Internet of Things, p. 9. ACM (2018)

    Google Scholar 

  10. Hartson, R.: Cognitive, physical, sensory, and functional affordances in interaction design. Behav. Inf. Technol. 22(5), 315–338 (2003)

    Article  Google Scholar 

  11. Ho, C., Spence, C.: Verbal interface design: Do verbal directional cues automatically orient visual spatial attention? Comput. Human Behav. 22(4), 733–748 (2006)

    Article  Google Scholar 

  12. Hu, K., Davison, T., Rahman, A., Sivaraman, V.: Air pollution exposure estimation and finding association with human activity using wearable sensor network. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 48. ACM (2014)

    Google Scholar 

  13. Idrees, Z., Zheng, L.: Low cost air pollution monitoring systems: a review of protocols and enabling technologies. J. Ind. Inf. Integration 17, 100123 (2020)

    Google Scholar 

  14. Kanemoto, K., Moran, D., Lenzen, M., Geschke, A.: International trade undermines national emission reduction targets: new evidence from air pollution. Global Environ. Change 24, 52–59 (2014)

    Article  Google Scholar 

  15. Khedo, K.K., Perseedoss, R., Mungur, A., et al.: A wireless sensor network air pollution monitoring system. arXiv preprint arXiv:1005.1737 (2010)

  16. Kim, K.H., Kabir, E., Kabir, S.: A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143 (2015)

    Article  Google Scholar 

  17. Kim, S., Paulos, E., Mankoff, J.: inair: A longitudinal study of indoor air quality measurements and visualizations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2745–2754. CHI 2013, ACM, New York, USA (2013). https://doi.org/10.1145/2470654.2481380

  18. Knote, R., Söllner, M.: Towards design excellence for context-aware services-the case of mobile navigation apps (2017)

    Google Scholar 

  19. Krall, J.R., et al.: Estimating exposure to traffic-related pm2. 5 for women commuters using vehicle and personal monitoring. Environmental Research, p. 109644 (2020)

    Google Scholar 

  20. Li, X., Jin, L., Kan, H.: Air pollution: a global problem needs local fixes (2019)

    Google Scholar 

  21. Ma, Y., Richards, M., Ghanem, M., Guo, Y., Hassard, J.: Air pollution monitoring and mining based on sensor grid in london. Sensors 8(6), 3601–3623 (2008)

    Article  Google Scholar 

  22. McCurdie, T., et al.: mhealth consumer apps: the case for user-centered design. Biomed. Instrument. Technol. 46(2), 49 (2012)

    Article  Google Scholar 

  23. Motti, V.G., Kalantari, N., Mahapasuthanon, P., Zheng, H.: GEST-DC: unifying transportation and air quality information in an mHealth application. In: Ahram, T., Falcão, C. (eds.) AHFE 2019. AISC, vol. 972, pp. 385–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19135-1_38

    Chapter  Google Scholar 

  24. Nielsen, J.: Usability Engineering. Morgan Kaufmann (1994)

    Google Scholar 

  25. Nikzad, N., et al.: Citisense: improving geospatial environmental assessment of air quality using a wireless personal exposure monitoring system. In: Proceedings of the Conference on Wireless Health, p. 11. ACM (2012)

    Google Scholar 

  26. Palinkas, L.A.: The California Wildfires. Global climate change, population displacement, and public health, pp. 53–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41890-8_4

    Chapter  Google Scholar 

  27. Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval 2(1–2), 1–135 (2008)

    Google Scholar 

  28. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates 71(2001), 2001 (2001)

    Google Scholar 

  29. Sauro, J.: Measuring usability with the system usability scale (sus) (2011)

    Google Scholar 

  30. Siuhi, S., Mwakalonge, J.: Opportunities and challenges of smart mobile applications in transportation. J. Traffic Transport. Eng. (english edition) 3(6), 582–592 (2016)

    Article  Google Scholar 

  31. Taylor, K., Silver, L.: Smartphone ownership is growing rapidly around the world, but not always equally (2018)

    Google Scholar 

  32. Tian, R., Dierk, C., Myers, C., Paulos, E.: Mypart: personal, portable, accurate, airborne particle counting. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1338–1348. ACM (2016)

    Google Scholar 

  33. Uyanik, I., Khatri, A., Tsiamyrtzis, P., Pavlidis, I.: Design and usage of an ozone mapping app. In: Proceedings of the Wireless Health 2014 on National Institutes of Health, pp. 1–7. ACM (2014)

    Google Scholar 

  34. (WHO), T.W.H.O.: Ambient (outdoor) air quality and health, May (2018). https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

  35. Xiaojun, C., Xianpeng, L., Peng, X.: Iot-based air pollution monitoring and forecasting system. In: 2015 International Conference on Computer and Computational Sciences (ICCCS), pp. 257–260. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by a multidisciplinary seed grant from George Mason University. The authors would like to thank GEST-DC project, Dr. Jenna Krall, and participants for their support in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattiya Mahapasuthanon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahapasuthanon, P., Kalantari, N., Motti, V.G. (2021). Evaluating an mHealth Application: Findings on Visualizing Transportation and Air Quality. In: Toeppe, K., Yan, H., Chu, S.K.W. (eds) Diversity, Divergence, Dialogue. iConference 2021. Lecture Notes in Computer Science(), vol 12645. Springer, Cham. https://doi.org/10.1007/978-3-030-71292-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71292-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71291-4

  • Online ISBN: 978-3-030-71292-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics