Skip to main content

An Integrated Lateral and Longitudinal Look Ahead Controller for Cooperative Vehicular Platooning

  • Conference paper
  • First Online:
Intelligent Transport Systems, From Research and Development to the Market Uptake (INTSYS 2020)

Abstract

Cooperative Vehicular Platooning (CoVP), has been emerging as a challenging Intelligent Traffic Systems application, promising to bring-about several safety and societal benefits. Relying on V2V communications to control such cooperative and automated actions brings several advantages. In this work, we present a Look Ahead PID controller for CoVP that solely relies upon V2V communications, together with a method to reduce the disturbance propagation in the platoon. The platooning controller also implements a solution to solve the cutting corner problem, keeping the platooning alignment. We evaluate its performance and limitations in realistic simulation scenarios, analyzing the stability and lateral errors of the CoVP, proving that such V2V enabled solutions can be effectively implemented.

This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDB/04234/2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Arem, B., van Driel, C.J.G., Visser, R.: The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans. Intell. Transp. Syst. 7(4), 429–436 (2006). https://doi.org/10.1109/TITS.2006.884615

    Article  Google Scholar 

  2. Barooah, P., Hespanha, J.: Error amplification and disturbance propagation in vehicle strings with decentralized linear control. In: IEEE Conference on Decision and Control 2005, pp. 4964–4969 (2005). https://doi.org/10.1109/CDC.2005.1582948. ISSN: 0191-2216

  3. Bayuwindra, A., Aakre, O.L., Ploeg, J., Nijmeijer, H.: Combined lateral and longitudinal CACC for a unicycle-type platoon. In: IEEE Intelligent Vehicles Symposium (IV) 2016, pp. 527–532 (2016). https://doi.org/10.1109/IVS.2016.7535437

  4. Bayuwindra, A., Ploeg, J., Lefeber, E., Nijmeijer, H.: Combined longitudinal and lateral control of car-like vehicle platooning with extended look-ahead. IEEE Trans. Control Syst. Technol. 28, 1–14 (2019). https://doi.org/10.1109/TCST.2019.2893830

    Article  Google Scholar 

  5. di Bernardo, M., Salvi, A., Santini, S.: Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans. Intell. Transp. Syst. 16(1), 102–112 (2015). https://doi.org/10.1109/TITS.2014.2328439

    Article  Google Scholar 

  6. European Telecommunications Standards Institute: ETSI TR 103 299 V2.1.1 Intelligent Transport Systems (ITS); Cooperative Adaptive Cruise Control (CACC); Pre-standardization study. Technical report, European Telecommunications Standards Institute (2019)

    Google Scholar 

  7. Fernandes, P., Nunes, U.: Platooning with IVC-enabled autonomous vehicles: strategies to mitigate communication delays, improve safety and traffic flow. IEEE Trans. Intell. Transp. Syst. 13(1), 91–106 (2012). https://doi.org/10.1109/TITS.2011.2179936

    Article  Google Scholar 

  8. Filho, E.V., et al.: Towards a cooperative robotic platooning testbed. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Ponta Delgada, Portugal, pp. 332–337 (2020). https://doi.org/10.1109/ICARSC49921.2020.9096132

  9. Gong, S., Du, L.: Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles. Transp. Res. Part B: Methodol. 116, 25–61 (2018). https://doi.org/10.1016/j.trb.2018.07.005

    Article  Google Scholar 

  10. Jia, D., Lu, K., Wang, J.: A disturbance-adaptive design for VANET-enabled vehicle platoon. IEEE Trans. Veh. Technol. 63(2), 527–539 (2014). https://doi.org/10.1109/TVT.2013.2280721

    Article  Google Scholar 

  11. Karoui, O., Khalgui, M., Koubâa, A., Guerfala, E., Li, Z., Tovar, E.: Dual mode for vehicular platoon safety: simulation and formal verification. Inf. Sci. 402, 216–232 (2017). https://doi.org/10.1016/j.ins.2017.03.016

    Article  Google Scholar 

  12. Kianfar, R., Ali, M., Falcone, P., Fredriksson, J.: Combined longitudinal and lateral control design for string stable vehicle platooning within a designated lane. In: IEEE Conference on Intelligent Transportation Systems (ITSC) 2014, pp. 1003–1008 (2014). https://doi.org/10.1109/ITSC.2014.6957819. ISSN: 2153-0017

  13. Luo, F., Larson, J., Munson, T.: Coordinated platooning with multiple speeds. Transp. Res. Part C: Emerg. Technol. 90, 213–225 (2018). https://doi.org/10.1016/j.trc.2018.02.011

    Article  Google Scholar 

  14. Seiler, P., Pant, A., Hedrick, K.: Disturbance propagation in vehicle strings. IEEE Trans. Autom. Control 49(10), 1835–1841 (2004). https://doi.org/10.1109/TAC.2004.835586

    Article  MathSciNet  MATH  Google Scholar 

  15. Talebpour, A., Mahmassani, H.S.: Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C: Emerg. Technol. 71, 143–163 (2016). https://doi.org/10.1016/j.trc.2016.07.007

    Article  Google Scholar 

  16. Vieira, B., Severino, R., Filho, E.V., Koubaa, A., Tovar, E.: COPADRIVe - a realistic simulation framework for cooperative autonomous driving applications. In: IEEE International Conference on Connected Vehicles and Expo - ICCVE 2019, Graz, Austria, pp. 1–6 (2019). https://doi.org/10.1109/ICCVE45908.2019.8965161

  17. Wei, S., Zou, Y., Zhang, X., Zhang, T., Li, X.: An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication. IEEE Trans. Veh. Technol. 68(2), 1116–1127 (2019). https://doi.org/10.1109/TVT.2018.2890418

    Article  Google Scholar 

  18. Zhao, Y., Minero, P., Gupta, V.: On disturbance propagation in leader-follower systems with limited leader information. Automatica 50(2), 591–598 (2014). https://doi.org/10.1016/j.automatica.2013.11.029. https://linkinghub.elsevier.com/retrieve/pii/S0005109813005463

  19. Öncü, S., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: String stability of interconnected vehicles under communication constraints. In: IEEE Conference on Decision and Control (CDC) 2012, Maui, HI, USA, pp. 2459–2464 (2012). https://doi.org/10.1109/CDC.2012.6426042. ISSN: 0743-1546

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Vasconcelos Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasconcelos Filho, E., Severino, R., Koubaa, A., Tovar, E. (2021). An Integrated Lateral and Longitudinal Look Ahead Controller for Cooperative Vehicular Platooning. In: Martins, A.L., Ferreira, J.C., Kocian, A., Costa, V. (eds) Intelligent Transport Systems, From Research and Development to the Market Uptake. INTSYS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-71454-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71454-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71453-6

  • Online ISBN: 978-3-030-71454-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics