Skip to main content

Introduction to the MDATA Model

  • Chapter
  • First Online:
MDATA: A New Knowledge Representation Model

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12647))

  • 902 Accesses

Abstract

Knowledge is human’s high-level understanding and summary of massive data. Intelligence is based on knowledge, and many works aim at representing knowledge and understanding intelligence. Although many models could represent static knowledge efficiently, it is still difficult to represent dynamic knowledge, especially which changes with time and space factors. In this chapter, we introduce a new knowledge representation model, Multi-dimensional Data Association and inTelligent Analysis (MDATA for short). We introduce three main parts in the MDATA model, knowledge representation, knowledge acquisition, and knowledge usage. We also discuss some potential applications that MDATA could be adopted and works greatly to improve the efficiency by the stronger ability of representing knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ernst, G., Newell, A.: GPS: A Case Study in Generality and Problem Solving. Academic Press, New York (1969)

    MATH  Google Scholar 

  2. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  Google Scholar 

  3. Green, C.C., Raphael, B.: The use of theorem-proving techniques in question-answering systems. In: Proceedings of the 23rd ACM National Conference, Washington, DC (1968)

    Google Scholar 

  4. Ramakrishnan, R., Ullman, J.D.: A survey of deductive database systems. J. Logic Program. 23(2) (1995)

    Google Scholar 

  5. Richens, R.H.: Preprogramming for mechanical translation. Mech. Translation 3(1) (1956)

    Google Scholar 

  6. Sowa, J.F.: Semantic networks. In: Encyclopedia of the Sciences of Learning (1987)

    Google Scholar 

  7. Kejriwal, M., Knoblock, C.A., Szekely, P.: Knowledge Graph. The MIT Press, Cambridge (2021)

    Google Scholar 

  8. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. In: Queue (2019)

    Google Scholar 

  9. Carley, K.M., Kaufer, K.S.: Semantic connectivity: an approach for analyzing symbols in semantic networks. Commun. Theory (1993)

    Google Scholar 

  10. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: ROCLING (1997)

    Google Scholar 

  11. WordNet. https://wordnet.princeton.edu/

  12. Puppe, F.: Knowledge representations and problem-solving methods. Systematic Introduction to Expert Systems. Springer-Verlag, Berlin Heidelberg (1993). https://doi.org/10.1007/978-3-642-77971-8

    Chapter  MATH  Google Scholar 

  13. Depedia. https://wiki.dbpedia.org/

  14. Yago. https://yago-knowledge.org/

  15. Freebase. http://www.freebase.be/

  16. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW (2018)

    Google Scholar 

  17. Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge graph embedding. In: EMNLP (2018)

    Google Scholar 

  18. Ma, Y., Tresp, V., Daxberger, E.A.: Embedding models for episodic knowledge graphs. J. Web Semantics 59, 100490 (2019)

    Article  Google Scholar 

  19. Garcia-Duran, A., Dumancic, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: EMNLP (2018)

    Google Scholar 

  20. Anderson, J.R., Libiere, C.: The Atomic Components of Thought. Lawrence Erlbaum Associates Publishers, Hillsdale (1998)

    Google Scholar 

  21. Ball, J., Rodgers, S., Gluck, K.: Integrating ACT-R and Cyc in a large-scale model of language comprehension for use in intelligent agents. In: AAAI (2004)

    Google Scholar 

  22. Anderson, J.R.: The Architecture of Cognition. Psychology Press, Boca Raton (1995)

    Google Scholar 

  23. Heise, E., Westermann, R.: Andersons theory of cognitive architecture (ACT*). In: Westmeyer, H. (ed.) Psychological Theories from a Structuralist Point of View. PSYCHOLOGY. Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/978-3-642-84015-9_5

    Chapter  Google Scholar 

  24. ACT-R website. http://act-r.psy.cmu.edu/software/

  25. Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance-based learning in dynamic decision making. Cogn. Sci. 27(4), 591–635 (2003)

    Article  Google Scholar 

  26. Gonzalez, C.: The boundaries of instance-based leraning theorey for explaning decisions from experience. Pammi VS 202, 73–98 (2013)

    Google Scholar 

  27. Newell, A., Rosenbloom, P.S., Laird, J.E.: SOAR: an architecture for general intelligence. Artif. Intell. 198733(1), 1–64

    Google Scholar 

  28. Chen, R.-D., Zhang, X.-S., Niu, W., Lan, H.-Y.: A research on architecture of APT attack detection and countering technology. J. Univ. Electron. Sci. Technol. China (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoquan Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, Y., Gu, Z., Li, A., Han, W. (2021). Introduction to the MDATA Model. In: Jia, Y., Gu, Z., Li, A. (eds) MDATA: A New Knowledge Representation Model. Lecture Notes in Computer Science(), vol 12647. Springer, Cham. https://doi.org/10.1007/978-3-030-71590-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71590-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71589-2

  • Online ISBN: 978-3-030-71590-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics