Skip to main content

Wind Farms Maintenance Optimization Using a Pickup and Delivery VRP Algorithm

  • Conference paper
  • First Online:
Book cover Information Technology for Management: Towards Business Excellence (ISM 2020, FedCSIS-IST 2020)

Abstract

Operations and maintenance of wind farms in renewable energy production are crucial to guarantee high availability and reduced downtime, saving at the same time the cost of energy produced. While SCADA or NLP-based techniques can be used to address maintenance tasks, efficient management of wind farms can be really achieved by adopting an intelligent scheduling algorithm. In this paper an algorithm that optimizes maintenance intervention routing is presented, taking into account the location of spare parts inventory, geographically dispersed intervention sites, and overall costs of the intervention, considering human resources and fuel consumption. Different scenarios are discussed through a toy example, to better explain the algorithm structure, and a real case of wind farms distributed in Sicily, to validate it. The usefulness of the proposed algorithm is shown also through some Key Performance Indicators selected from UNI EN 15341:2019. The purpose of this work is to show the effectiveness of adopting a VRP algorithm in optimizing the maintenance process of wind farms by investigating real scenarios; in addition, the proposed approach is also efficent therefore feasible for coping with unplanned interventions changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castellani, F., Astolfi, D., Sdringola, P., Proietti, S., Terzi, L.: Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment. Appl. Energy 185, 1076–1086 (2017). https://doi.org/10.1016/j.apenergy.2015.12.049

    Article  Google Scholar 

  2. Merkt, O.: Predictive models for maintenance optimization: an analytical literature survey of industrial maintenance strategies. In: Ziemba, E. (ed.) AITM/ISM -2019. LNBIP, vol. 380, pp. 135–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43353-6_8

    Chapter  Google Scholar 

  3. Ferreira, R.S., Feinstein, C.D., Barroso, L.A.: Operation and maintenance contracts for wind turbines. In: Sanz-Bobi, M.A. (ed.) Use, Operation and Maintenance of Renewable Energy Systems. GET, pp. 145–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03224-5_5

    Chapter  Google Scholar 

  4. Zhang, X., Zeng, J.: A general modeling method for opportunistic maintenance modeling of multi-unit systems. Reliab. Eng. Syst. Saf. 140, 176–190 (2015). https://doi.org/10.1016/j.ress.2015.03.030

    Article  Google Scholar 

  5. Dai, J., Yang, W., Cao, J., Liu, D., Long, X.: Ageing assessment of a wind turbine over time by interpreting wind farm SCADA data. Renew. Energy 116, 199–208 (2018). https://doi.org/10.1016/j.renene.2017.03.097

    Article  Google Scholar 

  6. Jin, X., Xu, Z., Qiao, W.: Condition monitoring of wind turbine generators using SCADA data analysis. IEEE Trans. Sustain. Energy 99, 1 (2020). https://doi.org/10.1109/TSTE.2020.2989220

    Article  Google Scholar 

  7. Chen, L., Xu, G., Zhang, Q., Zhang, X.: Learning deep representation of imbalanced SCADA data for fault detection of wind turbines. Measurement 139, 370–379 (2019). https://doi.org/10.1016/j.measurement.2019.03.029

    Article  Google Scholar 

  8. Dao, P.B., Staszewski, W.J., Barszcz, T., Uhl, T.: Condition monitoring and fault detection in wind turbines based on co-integration analysis of SCADA data. Renew. Energy 116, 107–122 (2018). https://doi.org/10.1016/j.renene.2017.06.089

    Article  Google Scholar 

  9. Bangalore, P., Patriksson, M.: Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines. Renew. Energy 115, 521–532 (2018). https://doi.org/10.1016/j.renene.2017.08.073

    Article  Google Scholar 

  10. Carchiolo, V., Longheu, A., Di Martino, V., Consoli, N.: Power plants failure reports analysis for predictive maintenance. In: Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST), vol. 1, pp. 404–410. INSTICC, SciTePress (2019). https://doi.org/10.5220/0008388204040410

  11. Leyh, C., Martin, S., Schäffer, T.: Analyzing industry 4.0 models with focus on lean production aspects. In: Ziemba, E. (ed.) AITM/ISM -2017. LNBIP, vol. 311, pp. 114–130. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77721-4_7

    Chapter  Google Scholar 

  12. Carchiolo, V., Catalano, G., Malgeri, M., Pellegrino, C., Platania, G., Trapani, N.: Modelling and optimization of wind farms’ processes Using BPM. In: Ziemba, E. (ed.) AITM/ISM -2019. LNBIP, vol. 380, pp. 95–115. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43353-6_6

    Chapter  Google Scholar 

  13. Carchiolo, V., et al.: Pick-up & delivery in maintenance management of renewable energy power plants. In: 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 579–585 (2020). https://doi.org/10.15439/2020F114

  14. Perez-Canto, S., Rubio-Romero, J.C.: A model for the preventive maintenance scheduling of power plants including wind farms. Reliab. Eng. Syst. Saf. 119, 67–75 (2013). https://doi.org/10.1016/j.ress.2013.04.005

    Article  Google Scholar 

  15. Yang, L., Li, G., Zhang, Z., Ma, X., Zhao, Y.: Operations maintenance optimization of wind turbines integrating wind and aging information. IEEE Trans. Sustain. Energy 12(1), 211–221 (2021). https://doi.org/10.1109/TSTE.2020.2986586

    Article  Google Scholar 

  16. Lopes, R.S., Cavalcante, C.A., Alencar, M.H.: Delay-time inspection model with dimensioning maintenance teams: a study of a company leasing construction equipment. Comput. Indus. Eng. 88, 341–349 (2015). https://doi.org/10.1016/j.cie.2015.07.009

    Article  Google Scholar 

  17. Si, G., Xia, T., Zhu, Y., Du, S., Xi, L.: Triple-level opportunistic maintenance policy for leasehold service network of multi-location production lines. Reliab. Eng. Syst. Saf. 190, 106519 (2019). https://doi.org/10.1016/j.ress.2019.106519

    Article  Google Scholar 

  18. Raza, A., Ulansky, V.: Optimal preventive maintenance of wind turbine components with imperfect continuous condition monitoring. Energies 12(19), 3801 (2019). https://doi.org/10.3390/en12193801

    Article  Google Scholar 

  19. Kang, J., Guedes Soares, C.: An opportunistic maintenance policy for offshore wind farms. Ocean Eng. 216, 108075 (2020). https://doi.org/10.1016/j.oceaneng.2020.108075

    Article  Google Scholar 

  20. Li, M., Wang, M., Kang, J., Sun, L., Jin, P.: An opportunistic maintenance strategy for offshore wind turbine system considering optimal maintenance intervals of subsystems. Ocean Eng. 216, 108067 (2020). https://doi.org/10.1016/j.oceaneng.2020.108067

    Article  Google Scholar 

  21. Shafiee, M., SÞrensen, J.D.: Maintenance optimization and inspection planning of wind energy assets models methods and strategies. Reliab. Eng. Syst. Saf. 192, 105993 (2019). https://doi.org/10.1016/j.oceaneng.2020.108075

    Article  Google Scholar 

  22. Dalgic, Y., Lazakis, I., Dinwoodie, I., McMillan, D., Revie, M.: Advanced logistics planning for offshore wind farm operation and maintenance activities. Ocean Eng. 101, 211–226 (2015). https://doi.org/10.1016/j.oceaneng.2015.04.040

    Article  Google Scholar 

  23. Tan, Q., Wei, T., Peng, W., Yu, Z., Wu, C.: Comprehensive evaluation model of wind farm site selection based on ideal matter element and grey clustering. J. Clean. Prod. 272, 122658 (2020). https://doi.org/10.1016/j.jclepro.2020.122658

    Article  Google Scholar 

  24. Yan, B., Ma, Y., Zhou, Y.: Research on spare parts inventory optimization in wind power industry. In: 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai), pp. 1–5 (2020). https://doi.org/10.1109/PHM-Shanghai49105.2020.9280922

  25. Liu, R., Dan, B., Zhou, M., Zhang, Y.: Coordinating contracts for a wind-power equipment supply chain with joint efforts on quality improvement and maintenance services. J. Clean. Prod. 243, 118616 (2020). https://doi.org/10.1016/j.jclepro.2019.118616

    Article  Google Scholar 

  26. Santos, M., González, M.: Factors that influence the performance of wind farms. Renew. Energy 135, 643–651 (2019). https://doi.org/10.1016/j.renene.2018.12.033

    Article  Google Scholar 

  27. Nguyen, T.A.T., Chou, S.Y.: Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model. Energy 187, 115909 (2019). https://doi.org/10.1016/j.energy.2019.115909

    Article  Google Scholar 

  28. Zhu, W., Castanier, B., Bettayeb, B.: A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition. Reliab. Eng. Syst. Saf. 190, 106512 (2019). https://doi.org/10.1016/j.ress.2019.106512

    Article  Google Scholar 

  29. UNI, EN: 15341:2019 Maintenance - Maintenance Key Performance Indicators. http://store.uni.com/catalogo/uni-en-15341-2019

  30. Zhong, S., Pantelous, A.A., Goh, M., Zhou, J.: A reliability-and-cost-based fuzzy approach to optimize preventive maintenance scheduling for offshore wind farms. Mech. Syst. Signal Process. 124, 643–663 (2019). https://doi.org/10.1016/j.ymssp.2019.02.012

    Article  Google Scholar 

  31. Yurusen, N.Y., Rowley, P.N., Watson, S.J., Melero, J.J.: Automated wind turbine maintenance scheduling. Reliab. Eng. Syst. Saf. 200, 106965 (2020). https://doi.org/10.1016/j.ress.2020.106965

    Article  Google Scholar 

  32. Fan, D., Ren, Y., Feng, Q., Zhu, B., Liu, Y., Wang, Z.: A hybrid heuristic optimization of maintenance routing and scheduling for offshore wind farms. J. Loss Prev. Process Indus. 62, 103949 (2019). https://doi.org/10.1016/j.jlp.2019.103949

    Article  Google Scholar 

  33. Irawan, C.A., Eskandarpour, M., Ouelhadj, D., Jones, D.: Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm. Eur. J. Oper. Res. 289(3), 912–926 (2021). https://doi.org/10.1016/j.ejor.2019.08.032

    Article  MathSciNet  Google Scholar 

  34. Gutierrez-Alcoba, A., Hendrix, E., Ortega, G., Halvorsen-Weare, E., Haugland, D.: On offshore wind farm maintenance scheduling for decision support on vessel fleet composition. Eur. J. Oper. Res. 279(1), 124–131 (2019). https://doi.org/10.1016/j.ejor.2019.04.020

    Article  MathSciNet  MATH  Google Scholar 

  35. Kovács, A., Erdös, G., Viharos, Z.J., Monostori, L.: A system for the detailed scheduling of wind farm maintenance. CIRP Ann. 60(1), 497–501 (2011). https://doi.org/10.1016/j.cirp.2011.03.049

    Article  Google Scholar 

  36. Froger, A., Gendreau, M., Mendoza, J.E., Pinson, E., Rousseau, L.M.: A branch-and-check approach for a wind turbine maintenance scheduling problem. Comput. Oper. Res. 88, 117–136 (2017). https://doi.org/10.1016/j.cor.2017.07.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Jbili, S., Chelbi, A., Radhoui, M., Kessentini, M.: Integrated strategy of vehicle routing and maintenance. Reliab. Eng. Syst. Saf. 170, 202–214 (2018). https://doi.org/10.1016/j.ress.2017.09.030

    Article  Google Scholar 

  38. Sasmi Hidayatul, Y.T., Djunaidy, A., Muklason, A.: Solving multi-objective vehicle routing problem using hyper-heuristic method by considering balance of route distances. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 937–942 (2019). https://doi.org/10.1109/ICOIACT46704.2019.8938484

  39. Bent, R., Hentenryck, P.V.: A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Comput. Opera. Res.33(4), 875–893 (2006). 10.1016/j.cor.2004.08.001

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the project of University of Catania PIACERI, PIAno di inCEntivi per la Ricerca di Ateneo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Carchiolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G., Trapani, N. (2021). Wind Farms Maintenance Optimization Using a Pickup and Delivery VRP Algorithm. In: Ziemba, E., Chmielarz, W. (eds) Information Technology for Management: Towards Business Excellence. ISM FedCSIS-IST 2020 2020. Lecture Notes in Business Information Processing, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-71846-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71846-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71845-9

  • Online ISBN: 978-3-030-71846-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics