Skip to main content

An Improved Map Matching Algorithm Based on Dynamic Programming Approach

  • Conference paper
  • First Online:
Information Technology for Management: Towards Business Excellence (ISM 2020, FedCSIS-IST 2020)

Abstract

GPS sensors embedded in almost all mobile devices and vehicles generate a large amount of data that can be used in both practical applications and transportation research. Despite the high accuracy of location measurements in 3–5 m on average, this data can not be used for practical use without preprocessing. The preprocessing step that is needed to identify the correct path as a sequence of road segments by a series of location measurements and road network data is called map matching. In this paper, we consider the offline map matching problem in which the whole trajectory is processed after it has been collected. We propose a map matching algorithm based on a dynamic programming approach. To enhance the quality of the map matching algorithm, we propose a modification of the algorithm aimed at enhancing the accuracy of the map matching procedure. The modification of the algorithms consists in dividing the GPS trajectory into sections and step-by-step running the base map matching algorithm for each section. The experimental studies were conducted on the dataset collected in Samara, Russia, and the publicly available large-scale dataset for testing, benchmarking, and offline learning of map matching algorithms. Experiments showed that the proposed algorithm outperforms other comparable algorithms in terms of accuracy.

The work was partially supported by RFBR research projects no. 18-29-03135-mk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agafonov, A., Yumaganov, A.: Short-term traffic flow forecasting using a distributed spatial-temporal k nearest neighbors model. In: Proceedings of the 21st IEEE International Conference on Computational Science and Engineering, CSE 2018, pp. 91–98 (2018). https://doi.org/10.1109/CSE.2018.00019

  2. Nagy, A., Simon, V.: Identifying hidden influences of traffic incidents’ effect in smart cities. In: Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, pp. 651–658 (2018). https://doi.org/10.15439/2018F194

  3. Amara, Y., Amamra, A., Daheur, Y., Saichi, L.: A GIS data realistic road generation approach for traffic simulation. In: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, pp. 385–390 (2019). https://doi.org/10.15439/2019F223

  4. Agafonov, A., Myasnikov, V., Borodinov, A.: Anticipatory vehicle routing in stochastic networks using multi-agent system. In: Proceedings of the 2019 21st International Conference on “Complex Systems: Control and Modeling Problems”, CSCMP 2019, vol. 2019-September, pp. 91–95 (2019). https://doi.org/10.1109/CSCMP45713.2019.8976557

  5. Carchiolo, V., Loria, M.P., Malgeri, M., Modica, P.W., Toja, M.: An adaptive algorithm for geofencing. In: Ziemba, E. (ed.) AITM/ISM 2018. LNBIP, vol. 346, pp. 115–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15154-6_7

    Chapter  Google Scholar 

  6. Feng, F., Pang, Y., Lodewijks, G.: Towards context-aware supervision for logistics asset management: concept design and system implementation. In: Ziemba, E. (ed.) AITM/ISM 2016. LNBIP, vol. 277, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53076-5_1

    Chapter  Google Scholar 

  7. Da Silva, D., et al.: Inference of driver behavior using correlated IoT data from the vehicle telemetry and the driver mobile phone. In: Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, FedCSIS 2019, pp. 487–491 (2019). https://doi.org/10.15439/2019F263

  8. Myasnikov, V.: Reconstruction of functions and digital images using sign representations. Comput. Opt. 43(6), 1041–1052 (2019). https://doi.org/10.18287/2412-6179-2019-43-6-1041-1052

    Article  Google Scholar 

  9. Kubička, M., Cela, A., Mounier, H., Niculescu, S.: On designing robust real-time map-matching algorithms. In: 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, pp. 464–470 (2014). https://doi.org/10.1109/ITSC.2014.6957733

  10. White, C., Bernstein, D., Kornhauser, A.: Some map matching algorithms for personal navigation assistants. Transp. Res. Part C: Emerg. Technol. 8(1–6), 91–108 (2000). https://doi.org/10.1016/S0968-090X(00)00026-7

    Article  Google Scholar 

  11. Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast Viterbi map matching with tunable weight functions. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 613–616. ACM, New York (2012). https://doi.org/10.1145/2424321.2424430

  12. Fiedler, D., Čáp, M., Nykl, J., Žilecký, P., Schaefer, M.: Map matching algorithm for large-scale datasets. arXiv:1910.05312 [cs, eess] (2019)

  13. Li, Y., Huang, Q., Kerber, M., Zhang, L., Guibas, L.: Large-scale joint map matching of GPS traces. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 214–223. ACM, New York (2013). https://doi.org/10.1145/2525314.2525333

  14. Kubicka, M., Cela, A., Mounier, H., Niculescu, S.I.: Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intell. Transp. Syst. Mag. 10(2), 150–166 (2018). https://doi.org/10.1109/MITS.2018.2806630

    Article  Google Scholar 

  15. Hashemi, M., Karimi, H.A.: A critical review of real-time map-matching algorithms: current issues and future directions. Comput. Environ. Urban Syst. 48, 153–165 (2014). https://doi.org/10.1016/j.compenvurbsys.2014.07.009

    Article  Google Scholar 

  16. Chao, P., Xu, Y., Hua, W., Zhou, X.: A survey on map-matching algorithms. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp. 121–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39469-1_10

    Chapter  Google Scholar 

  17. Karimi, H.A., Conahan, T., Roongpiboonsopit, D.: A methodology for predicting performances of map-matching algorithms. In: Carswell, J.D., Tezuka, T. (eds.) W2GIS 2006. LNCS, vol. 4295, pp. 202–213. Springer, Heidelberg (2006). https://doi.org/10.1007/11935148_19

    Chapter  Google Scholar 

  18. Quddus, M., Ochieng, W., Noland, R.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C: Emerg. Technol. 15(5), 312–328 (2007). https://doi.org/10.1016/j.trc.2007.05.002

    Article  Google Scholar 

  19. Jagadeesh, G., Srikanthan, T., Zhang, X.: A map matching method for GPS based real-time vehicle location. J. Navig. 57(3), 429–440 (2004). https://doi.org/10.1017/S0373463304002905

    Article  Google Scholar 

  20. Joshi, R.: A new approach to map matching for in-vehicle navigation systems: the rotational variation metric. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 33–38 (2001)

    Google Scholar 

  21. Srinivasan, D., Cheu, R., Tan, C.: Development of an improved ERP system using GPS and AI techniques. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, ITSC, pp. 554–559 (2003). https://doi.org/10.1109/ITSC.2003.1252014

  22. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: VLDB 2005 - Proceedings of 31st International Conference on Very Large Data Bases, pp. 853–864 (2005)

    Google Scholar 

  23. Yin, H., Wolfson, O.: A weight-based map matching method in moving objects databases. In: Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM, vol. 16, pp. 437–438 (2004)

    Google Scholar 

  24. Li, L., Quddus, M., Zhao, L.: High accuracy tightly-coupled integrity monitoring algorithm for map-matching. Transp. Res. Part C: Emerg. Technol. 36, 13–26 (2013). https://doi.org/10.1016/j.trc.2013.07.009

    Article  Google Scholar 

  25. Velaga, N.R., Quddus, M.A., Bristow, A.L.: Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems. Transp. Res. Part C: Emerg. Technol. 17(6), 672–683 (2009). https://doi.org/10.1016/j.trc.2009.05.008

    Article  Google Scholar 

  26. Sharath, M., Velaga, N., Quddus, M.: A dynamic two-dimensional (D2D) weight-based map-matching algorithm. Transp. Res. Part C: Emerg. Technol. 98, 409–432 (2019). https://doi.org/10.1016/j.trc.2018.12.009

    Article  Google Scholar 

  27. Chen, B., Yuan, H., Li, Q., Lam, W., Shaw, S.L., Yan, K.: Map-matching algorithm for large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sci. 28(1), 22–38 (2014). https://doi.org/10.1080/13658816.2013.816427

    Article  Google Scholar 

  28. Syed, S., Cannon, M.: Fuzzy logic based-map matching algorithm for vehicle navigation system in Urban Canyons. In: Proceedings of the National Technical Meeting, Institute of Navigation, pp. 982–993 (2004)

    Google Scholar 

  29. Quddus, M., Noland, R., Ochieng, W.: A high accuracy fuzzy logic based map matching algorithm for road transport. J. Intell. Transp. Syst.: Technol. Plann. Oper. 10(3), 103–115 (2006). https://doi.org/10.1080/15472450600793560

    Article  MATH  Google Scholar 

  30. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparseness. In: GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, pp. 336–343 (2009). https://doi.org/10.1145/1653771.1653818

  31. Raymond, R., Morimura, T., Osogami, T., Hirosue, N.: Map matching with Hidden Markov Model on sampled road network. In: Proceedings of the International Conference on Pattern Recognition, pp. 2242–2245 (2012)

    Google Scholar 

  32. Yin, Y., Shah, R., Zimmermann, R.: A general feature-based map matching framework with trajectory simplification. In: Proceedings of the 7th ACM SIGSPATIAL International Workshop on GeoStreaming, pp. 1–10. ACM, New York (2016) https://doi.org/10.1145/3003421.3003426

  33. Yang, C., Gidófalvi, G.: Fast map matching, an algorithm integrating hidden Markov model with precomputation. Int. J. Geogr. Inf. Sci. 32(3), 547–570 (2018). https://doi.org/10.1080/13658816.2017.1400548

    Article  Google Scholar 

  34. de Sousa, R.S., Boukerche, A., Loureiro, A.A.F.: A map matching based framework to reconstruct vehicular trajectories from GPS datasets. In: 2020 IEEE International Conference on Communications (ICC), ICC 2020, pp. 1–6 (2020). https://doi.org/10.1109/ICC40277.2020.9148732

  35. Yumaganov, A., Agafonov, A., Myasnikov, V.: Map matching algorithm based on dynamic programming approach. In: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 563–566 (2020). https://doi.org/10.15439/2020F139

  36. Kubicka, M., Cela, A., Moulin, P., Mounier, H., Niculescu, S.: Dataset for testing and training of map-matching algorithms. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 1088–1093 (2015). https://doi.org/10.1109/IVS.2015.7225829

  37. GraphHopper library (2020). https://github.com/graphhopper/map-matching

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Agafonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yumaganov, A., Agafonov, A., Myasnikov, V. (2021). An Improved Map Matching Algorithm Based on Dynamic Programming Approach. In: Ziemba, E., Chmielarz, W. (eds) Information Technology for Management: Towards Business Excellence. ISM FedCSIS-IST 2020 2020. Lecture Notes in Business Information Processing, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-71846-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71846-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71845-9

  • Online ISBN: 978-3-030-71846-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics