Skip to main content

On the k-Error Linear Complexities of De Bruijn Sequences

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12612))

Included in the following conference series:

  • 838 Accesses

Abstract

We study the k-error linear complexities of de Bruijn sequences. Let n be a positive integer and k be an integer less than \(\lceil \frac{2^{n-1}}{n}\rceil \). We show that the k-error linear complexity of a de Bruijn sequence of order n is greater than or equal to \(2^{n-1}+1\), which implies that de Bruijn sequences have good randomness property with respect to the k-error linear complexity. We also study the compactness of some related bounds, and prove that in the case that \(n\ge 4\) and n is a power of 2, there always exists a de Bruijn of order n such that the Hamming weight of \(L(\mathbf {s})\oplus R(\mathbf {s})\) is \(\frac{2^{n-1}}{n}\), where \(L(\mathbf {s})\) and \(R(\mathbf {s})\) denote respectively the left half and right half of one period of this de Bruijn sequence. Besides, some experimental results are provided for the case that n is not a power of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhakim, A., Nouiehed, M.: Stretching de Bruijn sequences. Des. Codes Crypt. 85(2), 381–394 (2017)

    Article  MathSciNet  Google Scholar 

  2. Amram, G., Ashlagi, Y., Rubin, A., Svoray, Y., Schwartz, M., Weiss, G.: An efficient shift rule for the prefer-max de Bruijn sequence. Discret. Math. 342(1), 226–232 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chan, A.H., Games, R.A., Key, E.L.: On the complexities of de Bruijn sequences. J. Comb. Theory Ser. A, 33(3), 233–246 (1982)

    Google Scholar 

  4. Chang, Z., Chrisnata, J., Ezerman, M.F., Kiah, H.M.: Rates of DNA sequence profiles for practical values of read lengths. IEEE Trans. Inf. Theory 63(11), 7166–7177 (2017)

    Article  MathSciNet  Google Scholar 

  5. Coppersmith, D., Rhoades, R.C., VanderKam, J.M.: Counting de Bruijn sequences as perturbations of linear recursions. arXiv (2017)

    Google Scholar 

  6. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_21

    Chapter  Google Scholar 

  7. Ding, C.: Lower bounds on the weight complexities of cascaded binary sequences. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 39–43. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0030350

    Chapter  Google Scholar 

  8. Ding, C., Xiao, G., Shan, W. (eds.): The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54973-0

    Book  MATH  Google Scholar 

  9. Dong, J., Pei, D.: Construction for de Bruijn sequences with large stage. Des. Codes Crypt. 85(2), 343–358 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dong, Y., Tian, T., Qi, W., Wang, Z.: New results on the minimal polynomials of modified de Bruijn sequences. Finite Fields Appl. 60, 101583 (2019)

    Article  MathSciNet  Google Scholar 

  11. Etzion, T.: On the distribution of de Nruijn CR-sequences (corresp.). IEEE Trans. Inf. Theory 32(3), 422–423 (1986)

    Google Scholar 

  12. Etzion, T.: Linear complexity of de Bruijn sequences-old and new results. IEEE Trans. Inf. Theory 45(2), 693–698 (1999)

    Article  MathSciNet  Google Scholar 

  13. Etzion, T., Lempel, A.: Construction of de Bruijn sequences of minimal complexity. IEEE Trans. Inf. Theory 30(5), 705–709 (1984)

    Article  MathSciNet  Google Scholar 

  14. Etzion, T., Lempel, A.: On the distribution of de Bruijn sequences of given complexity. IEEE Trans. Inf. Theory 30(4), 611–614 (1984)

    Article  MathSciNet  Google Scholar 

  15. Gabric, D., Sawada, J., Williams, A., Wong, D.: A successor rule framework for constructing \(k\) -ary de Bruijn sequences and universal cycles. IEEE Trans. Inf. Theory 66(1), 679–687 (2020)

    Google Scholar 

  16. Games, R.A.: There are no de Bruijn sequences of span n with complexity \(2^{n-1}+n+1\). J. Comb. Theory Ser. A 34(2), 248–251 (1983)

    Google Scholar 

  17. Golomb, S.W.: Shift Register Sequences (1981)

    Google Scholar 

  18. Green, D.H., Dimond, K.R.: Nonlinear product-feedback shift registers. Proc. Inst. Electr. Eng. 117(4), 681–686 (1970)

    Article  Google Scholar 

  19. Lempel, A.: On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput. 19(12), 1204–1209 (1970)

    Article  MathSciNet  Google Scholar 

  20. Li, C., Zeng, X., Helleseth, T., Li, C., Lei, H.: The properties of a class of linear FSRS and their applications to the construction of nonlinear FSRS. IEEE Trans. Inf. Theory 60(5), 3052–3061 (2014)

    Article  MathSciNet  Google Scholar 

  21. Li, M., Jiang, Y., Lin, D.: The adjacency graphs of some feedback shift registers. Des. Codes Crypt. 82(3), 695–713 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mandal, K., Gong, G.: Cryptographically strong de Bruijn sequences with large periods. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 104–118. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_8

    Chapter  Google Scholar 

  23. Mandal, K., Gong, G.: Feedback reconstruction and implementations of pseudorandom number generators from composited de Bruijn sequences. IEEE Trans. Comput. 65(9), 2725–2738 (2016)

    Article  MathSciNet  Google Scholar 

  24. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complex. 18(1), 87–103 (2002)

    Article  MathSciNet  Google Scholar 

  25. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J. Cryptol. 1(3), 159–176 (1989)

    Article  MathSciNet  Google Scholar 

  26. Mykkeltveit, J., Szmidt, J.: On cross joining de Bruijn sequences. IACR Cryptology ePrint Archive 2013, 760 (2013)

    Google Scholar 

  27. Rubin, A., Weiss, G.: Mapping prefer-opposite to prefer-one de Bruijn sequences. Des. Codes Crypt. 85(3), 547–555 (2017)

    Article  MathSciNet  Google Scholar 

  28. Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence construction. Discret. Math. 339(1), 127–131 (2016)

    Article  MathSciNet  Google Scholar 

  29. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Comput. 34(1), 81–85 (1985)

    Google Scholar 

  30. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period \(2^n\). IEEE Trans. Inf. Theory 39(4), 1398–1401 (1993)

    Google Scholar 

  31. Yang, B., Mandal, K., Aagaard, M.D., Gong, G.: Efficient composited de Bruijn sequence generators. IEEE Trans. Comput. 66(8), 1354–1368 (2017)

    Google Scholar 

  32. Zhang, Z.: Further results on correlation functions of de Bruijn sequences. Acta Mathematicae Applicatae Sinica 2(3), 257–262 (1985)

    Article  Google Scholar 

  33. Zhao, X., Tian, T., Qi, W.: An interleaved method for constructing de Bruijn sequences. Discret. Appl. Math. 254, 234–245 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhou, L., Tian, T., Qi, W., Wang, Z.: Constructions of de Bruijn sequences from a full-length shift register and an irreducible LFSR. Finite Fields Appl. 60, 101574 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the three anonymous reviewers whose comments helped us a lot in improving the quality of the paper. In particular, the fact that \(w_H(L(\mathbf {s})\oplus R(\mathbf {s}))\ne 2^{n-1}\) is pointed out by the second reviewer. This work was supported by the National Science Foundation of China (Grant Nos. 61902393, 61872359 and 61936008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Jiang, Y., Lin, D. (2021). On the k-Error Linear Complexities of De Bruijn Sequences. In: Wu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2020. Lecture Notes in Computer Science(), vol 12612. Springer, Cham. https://doi.org/10.1007/978-3-030-71852-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71852-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71851-0

  • Online ISBN: 978-3-030-71852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics