Skip to main content

An Efficient Blind Signature Scheme Based on SM2 Signature Algorithm

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12612))

Included in the following conference series:

  • 1514 Accesses

Abstract

The Chinese government releases the SM2 digital signature algorithm as one part of the Chinese public key crypto standard, and now it has become an international standard algorithm. To protect the privacy of messages, we propose an efficient blind signature scheme based on the SM2 signature algorithm in this paper. We prove that our scheme can satisfy blindness and EUF-CMA (existential unforgeability under chosen message attacks). We implement our scheme using MIRACL Cryptographic SDK, and propose a variant blind signature scheme. Security analysis and experimental evaluation demonstrate that our proposed scheme is practical for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, X., Mu, Y., Susilo, W., Wu, W., Zhou, J., Deng, R.H.: Preserving transparency and accountability in optimistic fair exchange of digital signatures. IEEE Trans. Inf. Forensics Secur. 6(2), 498–512 (2011)

    Article  Google Scholar 

  2. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31

    Chapter  MATH  Google Scholar 

  3. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and Communications Security, pp. 37–48. ACM Press, November 2013

    Google Scholar 

  4. Huang, Q., Jao, D., Wang, H.J.: Applications of secure electronic voting to automated privacy-preserving troubleshooting. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005: 12th Conference on Computer and Communications Security, pp. 68–80. ACM Press, November 2005

    Google Scholar 

  5. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3_24

    Chapter  Google Scholar 

  6. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference on Computer and Communications Security, pp. 1614–1625. ACM Press, October 2016

    Google Scholar 

  7. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31

    Chapter  Google Scholar 

  8. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology - CRYPTO 1982, pp. 199–203. Plenum Press, New York (1982)

    Google Scholar 

  9. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_24

    Chapter  Google Scholar 

  10. Baldimtsi, F., Lysyanskaya, A.: On the Security of One-Witness Blind Signature Schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_5

    Chapter  Google Scholar 

  11. He, D., Chen, J., Zhang, R.: An efficient identity-based blind signature scheme without bilinear pairings. Comput. Electr. Eng. 37(4), 444–450 (2011)

    Article  Google Scholar 

  12. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27

    Chapter  Google Scholar 

  13. He, D., Zhang, Y., Xie, X., Li, S., Sun, L.: Method and system for generating blind signature, China Patents, 109818730A, 06 March 2019

    Google Scholar 

  14. State Cryptography Administration: Public key cryptographic algorithm SM2 based on elliptic curves - part 2: digital signature algorithm (2010). http://www.sca.gov.cn/sca/xwdt/2010-12/17/1002386/files/b791a9f908bb4803875ab6aeeb7b4e03.pdf

  15. International Organization for Standardization: ISO/IEC 14888-3:2016/DAmd 1. https://www.iso.org/standard/70631.html. Accessed 2016

  16. Miracl: Miracl library (2017). https://www.miracl.com/

  17. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034852

    Chapter  Google Scholar 

  18. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233

    Chapter  Google Scholar 

  19. Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_9

    Chapter  Google Scholar 

  20. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  21. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_10

    Chapter  Google Scholar 

  22. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_18

    Chapter  Google Scholar 

  23. Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

    Chapter  Google Scholar 

  24. Abe, M., Ohkubo, M.: A framework for universally composable non-committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_26

    Chapter  Google Scholar 

  25. Lin, W., Jan, J.: A security personal learning tools using a proxy blind signature scheme. In: Proceedings of International Conference on Chinese Language Computing, Illinois, USA, pp. 273–277 (2000)

    Google Scholar 

  26. Zhang, F., Safavi-Naini, R., Lin, C.-Y.: New proxy signature, proxy blind signature and proxy ring signature schemes from bilinear pairing. Cryptology ePrint Archive, Report 2003/104 (2003). http://eprint.iacr.org/2003/104

  27. Awasthi, A.K., Lal, S.: Proxy blind signature scheme. Cryptology ePrint Archive, Report 2003/072 (2003). http://eprint.iacr.org/2003/072

  28. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_33

    Chapter  Google Scholar 

  29. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: a scalable solution to electronic cash. In: Hirchfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055483

    Chapter  Google Scholar 

  30. Ghadafi, E.: Formalizing group blind signatures and practical constructions without random oracles. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 330–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3_23

    Chapter  MATH  Google Scholar 

  31. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320 (2009). http://eprint.iacr.org/2009/320

  32. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_9

    Chapter  Google Scholar 

  33. Zhang, Z., Yang, K., Zhang, J., Chen, C.: Security of the SM2 signature scheme against generalized key substitution attacks. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS, vol. 9497, pp. 140–153. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27152-1_7

    Chapter  Google Scholar 

  34. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  35. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_3

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions which helped us to improve the content and presentation of this paper. The work was supported by the National Natural Science Foundation of China (Nos. 61972294, 61932016) and the Opening Project of Guangxi Key Laboratory of Trusted Software (No. kx202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debiao He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., He, D., Zhang, F., Huang, X., Li, D. (2021). An Efficient Blind Signature Scheme Based on SM2 Signature Algorithm. In: Wu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2020. Lecture Notes in Computer Science(), vol 12612. Springer, Cham. https://doi.org/10.1007/978-3-030-71852-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71852-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71851-0

  • Online ISBN: 978-3-030-71852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics