Skip to main content

Fully Secure ABE with Outsourced Decryption against Chosen Ciphertext Attack

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12612))

Included in the following conference series:

  • 995 Accesses

Abstract

Attribute-based encryption (ABE) provides fine-grained access control on encrypted data, but it is not suitable for limited-resource devices due to the inefficiency of decryption. To solve this problem, Green et al. proposed a new paradigm named attribute-based encryption with outsourced decryption (OD-ABE). It allows a proxy with a transformation key delegated from the user to transform any ABE ciphertext into a constant size ciphertext. While full security against chosen ciphertext attack (CCA) is generally considered as the strongest security notion for an ABE system, none of existing OD-ABE schemes achieves full security and CCA security simultaneously. In this paper, we propose the full CCA security model for OD-ABE and construct concrete (ciphertext-policy and key-policy) OD-ABE schemes that are fully CCA-secure in the random oracle model. Specifically, most complex operations of decryption as well as the verification of ciphertexts can be offloaded to the proxy in our schemes. We make detailed performance evaluations in the Charm framework. The experimental results indicate that the user saves significantly on both bandwidth and time during decryption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, M.: Securing “encryption + proof of knowledge” in the random oracle model. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 277–289. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_19

    Chapter  Google Scholar 

  2. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 665–682. ACM (2017)

    Google Scholar 

  3. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3(2), 111–128 (2013)

    Article  Google Scholar 

  4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_6

    Chapter  MATH  Google Scholar 

  5. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel Institute of Technology, Technion, Haifa, Israel (1996)

    Google Scholar 

  6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy, S&P 2007, pp. 321–334. IEEE Computer Society (2007)

    Google Scholar 

  7. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_13

    Chapter  Google Scholar 

  8. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_33

    Chapter  Google Scholar 

  9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  10. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  11. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

    Chapter  Google Scholar 

  12. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, pp. 456–465. ACM (2007)

    Google Scholar 

  13. Damgård, I.: On sigma-protocols. Lectures on cryptologic protocol theory. Faculty of Science, University of Aarhus (2010)

    Google Scholar 

  14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-Hellman assumptions. J. Cryptology 30(1), 242–288 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptology 26(1), 80–101 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-lin and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 278–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_10

    Chapter  Google Scholar 

  18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM (2006)

    Google Scholar 

  19. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE ciphertexts. In: 20th USENIX Security Symposium. USENIX Association (2011)

    Google Scholar 

  20. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_22

    Chapter  Google Scholar 

  21. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eigth Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE Computer Society (1993)

    Google Scholar 

  22. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for \(NC^1\) from \(\mathit{k}\)-Lin. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_1

    Chapter  Google Scholar 

  23. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  24. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  25. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_30

    Chapter  Google Scholar 

  26. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_12

    Chapter  Google Scholar 

  27. Lin, H., Luo, J.: Compact adaptively secure ABE from k-lin: beyond NC\(^1\) and towards NL. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_9

    Chapter  Google Scholar 

  28. Lynn, B.: The pairing-based cryptography library. http://crypto.stanford.edu/pbc

  29. Ma, H., Zhang, R., Wan, Z., Lu, Y., Lin, S.: Verifiable and exculpable outsourced attribute-based encryption for access control in cloud computing. IEEE Trans. Dependable Secur. Comput. 14(6), 679–692 (2017)

    Article  Google Scholar 

  30. Ma, H., Zhang, R., Yang, G., Song, Z., He, K., Xiao, Y.: Efficient fine-grained data sharing mechanism for electronic medical record systems with mobile devices. IEEE Trans. Dependable Secur. Comput. 17(5), 1026–1038 (2020)

    Article  Google Scholar 

  31. Ning, J., Cao, Z., Dong, X., Liang, K., Ma, H., Wei, L.: Auditable \(\sigma \)-time outsourced attribute-based encryption for access control in cloud computing. IEEE Trans. Inf. Forensics Secur. 13(1), 94–105 (2018)

    Article  Google Scholar 

  32. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, pp. 195–203. ACM (2007)

    Google Scholar 

  33. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  34. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptology 15(2), 75–96 (2002)

    Article  MathSciNet  Google Scholar 

  35. Wang, T., Ma, H., Zhou, Y., Zhang, R., Song, Z.: Fully accountable data sharing for pay-as-you-go cloud scenes. IEEE Trans. Dependable Secur. Comput. https://doi.org/10.1109/TDSC.2019.2947579

  36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  37. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  38. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_5

    Chapter  Google Scholar 

  39. Zuo, C., Shao, J., Wei, G., Xie, M., Ji, M.: Chosen ciphertext secure attribute-based encryption with outsourced decryption. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016 Part I. LNCS, vol. 9722, pp. 495–508. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6_30

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments. This work was supported in part by the National Natural Science Foundation of China (Nos. 61632020, U1936209, 62002353, 61772520, 61802392, and 61972094), in part by the Beijing Natural Science Foundation (No. 4192067), in part by the Key Research and Development Project of Zhejiang Province (Nos. 2017C01062 and 2020C01078), and in part by the Beijing Municipal Science & Technology Commission (Nos. Z191100007119007 and Z191100007119002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Zhou, Y., Ma, H., Liu, Y., Zhang, R. (2021). Fully Secure ABE with Outsourced Decryption against Chosen Ciphertext Attack. In: Wu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2020. Lecture Notes in Computer Science(), vol 12612. Springer, Cham. https://doi.org/10.1007/978-3-030-71852-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71852-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71851-0

  • Online ISBN: 978-3-030-71852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics