Skip to main content

Pareto Front Estimation Using Unit Hyperplane

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12654))

Included in the following conference series:

Abstract

This work proposes a method to estimate the Pareto front even in areas without objective vectors in the objective space. For the Pareto front approximation, we use a set of non-dominated points, objective vectors, in the objective space. To finely approximate the Pareto front, we need to increase the number of objective vectors. It is worth to estimate the Pareto front with a limited number of objective vectors. The proposed method uses the Kriging approximation and estimates the Pareto front using the unit hyperplane in the objective space. In the experiment using representative simple and complicated Pareto fronts derived from the DTLZ family, we visually show the estimation quality of the proposed method. Also, we show that the shape of the Pareto front and the distribution of sample objective vectors affect the estimation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  2. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: 2006 Genetic and Evolutionary Computation (GECCO 2006), pp. 635–642 (2006)

    Google Scholar 

  3. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: 2011 Genetic and Evolutionary Computation (GECCO 2011), pp. 721–728 (2011)

    Google Scholar 

  4. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 7120–731 (2007)

    Google Scholar 

  5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  6. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: 2002 IEEE Congress on Evolutionary Computation (CEC 2002), pp. 825–830 (2002)

    Google Scholar 

  9. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  10. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  11. Takagi, T., Takadama, K., Sato, H.: Incremental lattice design of weight vector set. In: 2020 Genetic and Evolutionary Computation Conference Companion (GECCO 2020), pp. 1486–1494 (2020)

    Google Scholar 

  12. Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective optimization based on Kuhn-Munkres’ algorithm. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomoaki Takagi , Keiki Takadama or Hiroyuki Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takagi, T., Takadama, K., Sato, H. (2021). Pareto Front Estimation Using Unit Hyperplane. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics