Skip to main content

On the Interaction Between Distance Functions and Clustering Criteria in Multi-objective Clustering

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

Multi-criterion algorithms for clustering have gained some traction due to their ability to cater to a diverse range of cluster properties. Here, we investigate the interaction between the clustering criteria employed in a multi-objective algorithm and the distance functions on which these criteria operate. We do so by contrasting the multi-criterion evolutionary algorithm \(\varDelta \)-MOCK with a bi-objective version of the evolutionary multi-view clustering approach MVMC, which uses a single clustering criterion but can incorporate multiple dissimilarity matrices. Using a benchmark suite representing a diverse range of cluster properties, we illustrate that comparable results to \(\varDelta \)-MOCK can be achieved using MVMC with two complementary distance functions. We then establish the mathematical equivalence of \(\varDelta \)-MOCK’s connectivity objective to a compactness criterion operating on a redefined distance function. We conclude by discussing the implications of our findings for future work on the representation of clusters in multi-objective evolutionary clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In supervised multi-view learning, a feature representation of each view is required, as the end-goal is typically a feature-to-output mapping.

References

  1. Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D.: Clustering with deep learning: taxonomy and new methods. arXiv:1801.07648 (2018)

  2. Bayá, A.E., Granitto, P.M.: How many clusters: a validation index for arbitrary-shaped clusters. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 401–14 (2013)

    Article  Google Scholar 

  3. de Carvalho, F.A., Lechevallier, Y., de Melo, F.M.: Partitioning hard clustering algorithms based on multiple dissimilarity matrices. Pattern Recogn. 45(1), 447–464 (2012)

    Article  Google Scholar 

  4. de Carvalho, F.A.T., Lechevallier, Y., Despeyroux, T., de Melo, F.M.: Multi-view clustering on relational data. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 527, pp. 37–51. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02999-3_3

    Chapter  Google Scholar 

  5. Delattre, M., Hansen, P.: Bicriterion cluster analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2(4), 277–291 (1980)

    Article  Google Scholar 

  6. Garza-Fabre, M., Handl, J., Knowles, J.: An improved and more scalable evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 22(4), 515–535 (2018)

    Article  Google Scholar 

  7. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

    Article  Google Scholar 

  8. Hennig, C.: What are the true clusters? Pattern Recogn. Lett. 64, 53–62 (2015)

    Article  Google Scholar 

  9. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075

    Article  MATH  Google Scholar 

  10. José-García, A., Gómez-Flores, W.: Automatic clustering using nature-inspired metaheuristics: a survey. Appl. Soft Comput. 41, 192–213 (2016)

    Article  Google Scholar 

  11. Jose-Garcia, A., Handl, J., Gomez-Flores, W., Garza-Fabre, M.: An evolutionary many-objective approach to multiview clustering using feature and relational data. Under review to Applied Soft Computing (2020)

    Google Scholar 

  12. Kanaan-Izquierdo, S., Ziyatdinov, A., Perera-Lluna, A.: Multiview and multifeature spectral clustering using common eigenvectors. Pattern Recogn. Lett. 102, 30–36 (2018)

    Article  Google Scholar 

  13. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)

    Google Scholar 

  14. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: A survey of multiobjective evolutionary clustering. ACM Comput. Surv. (CSUR) 47(4), 1–46 (2015)

    Article  Google Scholar 

  15. Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Proceedings of the Third Annual Conference on Genetic Programming, vol. 1998, pp. 568–575 (1998)

    Google Scholar 

  16. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  18. Santos, J.M., de Sá, J.M.: Human clustering on bi-dimensional data: an assessment. Technical report, INEB - Instituto de Engenharia Biomedica (2005)

    Google Scholar 

  19. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23, 2031–2038 (2013). https://doi.org/10.1007/s00521-013-1362-6

    Article  Google Scholar 

  20. Theodoridis, S., Koutrumbas, K.: Pattern Recognition, 4th edn. Elsevier Inc., Amsterdam (2009)

    Google Scholar 

  21. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adán José-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

José-García, A., Handl, J. (2021). On the Interaction Between Distance Functions and Clustering Criteria in Multi-objective Clustering. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics