Abstract
Large-scale multiobjective optimization problems (LSMOPs) exist widely in real-world applications, and they are challenging for existing evolutionary algorithms due to their massive volume of search space. Despite that a number of large-scale multiobjective evolutionary algorithms (LSMOEAs) have been proposed in recent years, their effectiveness in solving LSMOPs remains unsatisfactory. One main reason is that most existing LSMOEAs may fail to balance convergence enhancement and diversity maintenance, especially for solving real-world problems. To address this issue, we propose to use a hybridized LSMOEA with adaptive operator selection (AOS) to handle real-world LSMOPs. Specifically, the proposed hybridized LSMOEA with AOS (AOS-LSMOEA) includes multiple different offspring generation and environmental selection strategies extracted from some existing LSMOEAs. Then it uses the AOS to adaptively determine the application rates of different offspring generation and environmental selection operators in an online manner. The proposed approach is capable of taking advantage of existing LSMOEAs, and the AOS enables the algorithm to choose suitable operators for solving different LSMOPs. In this study, the proposed algorithm is expected to solve the voltage transformer ratio error estimation (TREE) problems effectively. Experimental results show that AOS-LSMOEA achieves significant performance improvement due to the hybridization of different operators and the adoption of AOS method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antonio, L.M., Coello, C.A.C.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2758–2765 (2013)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(12), 4108–4121 (2017)
Cheng, R.: Nature inspired optimization of large problems. Ph.D. thesis, University of Surrey (2016)
Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 5. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2
Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Advanced Information and Knowledge Processing. Springer, London (2005)
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive operator selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_18
Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60(1–2), 25–64 (2010)
Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach. Learn. 5, 407–425 (1990)
He, C., Cheng, R., Yazdani, D.: Adaptive offspring generation for evolutionary large-scale multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. 1–13 (2020)
He, C., Li, L., Tian, Y., Zhang, X., Cheng, R., Jin, Y., Yao, X.: Accelerating large-scale multiobjective optimization via problem reformulation. IEEE Trans. Evol. Comput. 23(6), 949–961 (2019)
He, C., Cheng, R., Tian, Y., Zhang, X.: Iterated problem reformulation for evolutionary large-scale multiobjective optimization. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)
He, C., Cheng, R., Zhang, C., Tian, Y., Chen, Q., Yao, X.: Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers. IEEE Trans. Evol. Comput. 24(5), 868–881 (2020)
He, C., Tian, Y., Jin, Y., Zhang, X., Pan, L.: A radial space division based many-objective optimization evolutionary algorithm. Appl. Soft Comput. 61, 603–621 (2017)
Ishibuchi, H., Murata, T.: Multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C 28(3), 392–403 (1998)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13, 284–302 (2009)
Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)
Ma, X., et al.: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 20(2), 275–298 (2015)
Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global continues optimization: a survey. Inf. Sci. 295, 407–428 (2015)
Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74–88 (2018)
Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17(3), 321–344 (2013)
Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Beyer, H., O’Reilly, U., (eds.) Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 1539–1546. ACM (2005)
Thierens, D.: Adaptive strategies for operator allocation. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence. SCI, vol. 54, pp. 77–90. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69432-8_4
Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)
Tian, Y., Zheng, X., Zhang, X., Jin, Y.: Efficient large-scale multiobjective optimization based on a competitive swarm optimizer. IEEE Trans. Cybern. 50(8), 3696–3708 (2020)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 97–112 (2016)
Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale multiobjective optimization based on problem transformation. IEEE Trans. Evol. Comput. 22(2), 260–275 (2018)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Ziztler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimization, and Control, pp. 95–100 (2002)
Acknowledgements
This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110575), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386), the Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531), the Program for University Key Laboratory of Guangdong Province (Grant No. 2017KSYS008), and the National Natural Science Foundation of China (No. 61903178 and 61906081).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, C., Li, L., He, C., Cheng, R., Yao, X. (2021). Operator-Adapted Evolutionary Large-Scale Multiobjective Optimization for Voltage Transformer Ratio Error Estimation. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-72062-9_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72061-2
Online ISBN: 978-3-030-72062-9
eBook Packages: Computer ScienceComputer Science (R0)