Skip to main content

Deep Learning in Medical Applications: Lesion Segmentation in Skin Cancer Images Using Modified and Improved Encoder-Decoder Architecture

  • Conference paper
  • First Online:
Geometry and Vision (ISGV 2021)

Abstract

The rise of deep learning techniques, such as a convolutional neural network (CNN) in solving medical image problems, offered fascinating results that motivated researchers to design automatic diagnostic systems. Image segmentation is one of the crucial and challenging steps in the design of a computer-aided diagnosis system owing to the presence of low contrast between skin lesion and background, noise artifacts, color variations, and irregular lesion boundaries. In this paper, we propose a modified and improved encoder-decoder architecture with a smaller network depth and a smaller number of kernels to enhance the segmentation process. The network performs segmentation for skin cancer images to obtain information about the infected area. The proposed model utilizes the power of the VGG19 network’s weight layers for calculating rich features. The deconvolutional layers were designed to regain spatial information of the image. In addition to this, optimized training parameters were adopted to further improve the network’s performance. The designed network was evaluated for two publicly available benchmarked datasets ISIC, and PH2 consists of dermoscopic skin cancer images. The experimental observations proved that the proposed network achieved the higher average values of segmentation accuracy 95.67%, IoU 96.70%, and BF-score of 89.20% on ISIC 2017 and accuracy 98.50%, IoU 93.25%, and BF-score 84.08% on PH2 datasets as compared to other state-of-the-art algorithms on the same datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skourt, B.A., El Hassani, A., Majda, A.: Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 127, 109–113 (2018)

    Article  Google Scholar 

  2. Zhang, Y., et al.: Automatic breast and fibroglandular tissue segmentation in breast MRI using deep learning by a fully-convolutional residual neural network U-net. Acad. Radiol. 26(11), 1526–1535 (2019)

    Article  Google Scholar 

  3. Yu, S., Xiao, D., Frost, S., Kanagasingam, Y.: Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput. Med. Imaging Graph. 74, 61–71 (2019)

    Article  Google Scholar 

  4. Wu, D., Xu, L., Zhang, R., Zhang, H., Ren, L., Zhang, Y.-T.: Continuous cuff-less blood pressure estimation based on combined information using deep learning approach. J. Med. Imaging Health Inform. 8(6), 1290–1299 (2018)

    Article  Google Scholar 

  5. Skin Cancer-Index (2018). https://www.isic-archive.com. Accessed 2019

  6. What is Melanoma Skin Cancer? https://www.cancer.org/cancer/melanoma-skin-cancer/about/what-is-melanoma.html. Accessed 2019

  7. Bogo, F., Peruch, F., Fortina, A.B., Peserico, E.: Where’s the lesion?: Variability in human and automated segmentation of dermoscopy images of melanocytic skin lesions. In: Dermoscopy Image Analysis, pp. 82–110. CRC Press (2015)

    Google Scholar 

  8. Types of Skin Cancer. https://www.everydayhealth.com/skin-cancer/types. Accessed 2020

  9. Sridevi, M., Mala, C.: A survey on monochrome image segmentation methods. Procedia Technol. 6, 548–555 (2012)

    Article  Google Scholar 

  10. Barcelos, C.A.Z., Pires, V.: An automatic based nonlinear diffusion equations scheme for skin lesion segmentation. Appl. Math. Comput. 215(1), 251–261 (2009)

    MathSciNet  MATH  Google Scholar 

  11. de Souza Ganzeli, H., Bottesini, J.G., de Oliveira Paz, L., Ribeiro, M.F.S.: Skan: Skin scanner-system for skin cancer detection using adaptive techniques. IEEE Latin Am. Trans. 9(2), 206–212 (2011)

    Google Scholar 

  12. Norton, K.A., et al.: Three-phase general border detection method for dermoscopy images using non-uniform illumination correction. Skin Res. Technol. 18(3), 290–300 (2012)

    Article  Google Scholar 

  13. Qaisar Abbas, M., Celebi, E., Fondón, I.: Computer-aided pattern classification system for dermoscopy images. Skin Res. Technol. 18(3), 278–289 (2012)

    Article  Google Scholar 

  14. Garnavi, R., Aldeen, M., Celebi, M.E., Varigos, G., Finch, S.: Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 35(2), 105–115 (2011)

    Article  Google Scholar 

  15. Ma, Z., Tavares, J.M.R.: A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inform. 20(2), 615–623 (2015)

    Article  Google Scholar 

  16. Cavalcanti, P.G., Scharcanski, J.: A coarse-to-fine approach for segmenting melanocytic skin lesions in standard camera images. Comput. Methods Programs Biomed. 112(3), 684–693 (2013)

    Article  Google Scholar 

  17. Shan, P.: Image segmentation method based on K-mean algorithm. EURASIP J. Image Video Process. 2018(1), 1–9 (2018). https://doi.org/10.1186/s13640-018-0322-6

    Article  Google Scholar 

  18. Choudhry, M.S., Kapoor, R.: Performance analysis of fuzzy C-means clustering methods for MRI image segmentation. Procedia Comput. Sci. 89, 749–758 (2016)

    Article  Google Scholar 

  19. Kasmi, R., Mokrani, K.: Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule. IET Image Proc. 10(6), 448–455 (2016)

    Article  Google Scholar 

  20. Vasconcelos, F., Medeiros, A., Peixoto, S., Filho, P.: Automatic skin lesions segmentation based on a new morphological approach via geodesic active contour. Cognit. Syst. Res. 55, 44–59 (2019)

    Article  Google Scholar 

  21. Bayraktar, M., Kockara, S., Halic, T., Mete, M., Wong, H.K., Iqbal, K.: Local edge-enhanced active contour for accurate skin lesion border detection. BMC Bioinform. 20(2), 91 (2019). https://doi.org/10.1186/s12859-019-2625-8

    Article  Google Scholar 

  22. Manjón, J.V., et al.: MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Comput. Med. Imaging Graph. 69, 43–51 (2018)

    Article  Google Scholar 

  23. Tan, T.Y., Zhang, L., Lim, C.P., Fielding, B., Yu, Y., Anderson, E.: Evolving ensemble models for image segmentation using enhanced particle swarm optimization. IEEE Access 7, 34004–34019 (2019)

    Article  Google Scholar 

  24. Alshayeji, M.H., Al-Rousan, M.A., Ellethy, H., Abed, S.: An efficient multiple sclerosis segmentation and detection system using neural networks. Comput. Electr. Eng. 71, 191–205 (2018)

    Article  Google Scholar 

  25. Cernazanu-Glavan, C., Holban, S.: Segmentation of bone structure in X-ray images using convolutional neural network. Adv. Electr. Comput. Eng 13(1), 87–94 (2013)

    Article  Google Scholar 

  26. Melinščak, M., Prentašić, P., Lončarić, S.: Retinal vessel segmentation using deep neural networks. In: 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015) (2015)

    Google Scholar 

  27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  28. Hong, S., Noh, H., Han, B.: Decoupled deep neural network for semi-supervised semantic segmentation. In: Advances in Neural Information Processing Systems, pp. 1495–1503 (2015)

    Google Scholar 

  29. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Okur, E., Turkan, M.: A survey on automated melanoma detection. Eng. Appl. Artif. Intell. 73, 50–67 (2018)

    Article  Google Scholar 

  32. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019). https://doi.org/10.1007/s10278-019-00227-x

    Article  Google Scholar 

  33. Yang, X., Zeng, Z., Yeo, S.Y., Tan, C., Tey, H.L., Su, Y.: A novel multi-task deep learning model for skin lesion segmentation and classification. arXiv preprint arXiv:1703.01025 (2017)

  34. Kawahara, J., BenTaieb, A., Hamarneh, G.: Deep features to classify skin lesions. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1397–1400. IEEE (2016)

    Google Scholar 

  35. Nida, N., Irtaza, A., Javed, A., Yousaf, M.H., Mahmood, M.T.: Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Int. J. Med. Inform. 124, 37–48 (2019)

    Article  Google Scholar 

  36. Nasr-Esfahani, E., et al.: Dense fully convolutional network for skin lesion segmentation arXiv preprint arXiv:1712.10207 (2017)

  37. Vesal, S., Ravikumar, N., Maier, A.: SkinNet: a deep learning framework for skin lesion segmentation arXiv preprint arXiv:1806.09522 (2018)

  38. Zhang, X.: Melanoma segmentation based on deep learning. Comput. Assist. Surg. 22(s1), 267–277 (2017)

    Article  Google Scholar 

  39. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.-A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2016)

    Article  Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition arXiv preprint arXiv:1409.1556 (2014)

  41. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  42. The International Skin Imaging Collaboration. www.isic-archive.com. Accessed 2019

  43. Dermofit Image Library. https://licensing.edinburgh-innovations.ed.ac.uk/. Accessed 2019

  44. Ninh, Q.C., Tran, T.-T., Tran, T.T., Tran, T.A.X., Pham, V.-T.: Skin lesion segmentation based on modification of SegNet neural networks. In: 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), pp. 575–578. IEEE (2019)

    Google Scholar 

  45. Jahanifar, M., Tajeddin, N.Z., Asl, B.M., Gooya, A.: Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE J. Biomed. Health Inform. 23(2), 509–518 (2018)

    Article  Google Scholar 

  46. Yuan, Y., Chao, M., Lo, Y.-C.: Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Trans. Med. Imaging 36(9), 1876–1886 (2017)

    Article  Google Scholar 

  47. Bi, L., Kim, J., Ahn, E., Kumar, A., Feng, D., Fulham, M.: Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 85, 78–89 (2019)

    Article  Google Scholar 

  48. Bi, L., Kim, J., Ahn, E., Kumar, A., Fulham, M., Feng, D.: Dermoscopic image segmentation via multi-stage fully convolutional networks. IEEE Trans. Biomed. Eng. 64, 2065–2074 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, R., GholamHosseini, H., Sinha, R. (2021). Deep Learning in Medical Applications: Lesion Segmentation in Skin Cancer Images Using Modified and Improved Encoder-Decoder Architecture. In: Nguyen, M., Yan, W.Q., Ho, H. (eds) Geometry and Vision. ISGV 2021. Communications in Computer and Information Science, vol 1386. Springer, Cham. https://doi.org/10.1007/978-3-030-72073-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72073-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72072-8

  • Online ISBN: 978-3-030-72073-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics