Skip to main content

Bayesian Skip Net: Building on Prior Information for the Prediction and Segmentation of Stroke Lesions

  • Conference paper
  • First Online:
  • 1982 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Abstract

Perfusion CT is widely used in acute ischemic stroke to determine eligibility for acute treatment, by defining an ischemic core and penumbra. In this work, we propose a novel way of building on prior information for the automatic prediction and segmentation of stroke lesions. To this end, we reformulate the task to identify differences from a prior segmentation by extending a three-dimensional Attention Gated Unet with a skip connection allowing only an unchanged prior to bypass most of the network. We show that this technique improves results obtained by a baseline Attention Gated Unet on both the Geneva Stroke Dataset and the ISLES 2018 dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ISLES: Ischemic Stroke Lesion Segmentation Challenge (2018). http://www.isles-challenge.org/

  2. Albers, G.W., et al.: Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England J. Med. 378(8), 708–718 (2018). https://doi.org/10.1056/NEJMoa1713973. Massachusetts Medical Society, publisher eprint

  3. Shalini, A., et al.: Cerebral blood flow predicts the infarct core. Stroke 50(10), 2783–2789 (2019). https://doi.org/10.1161/STROKEAHA.119.026640. https://www.ahajournals.org/doi/10.1161/STROKEAHA.119.026640. Publisher: American Heart Association

  4. Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine learning practice and the bias-variance trade-off. arXiv:1812.11118 [cs, stat] (2019)

  5. Benjamin Emelia, J., et al.: Heart disease and stroke statistics–2019 update: a report from the American Heart Association. Circulation, 139(10), e56–e528 (2019). https://doi.org/10.1161/CIR.0000000000000659. https://www.ahajournals.org/doi/10.1161/CIR.0000000000000659. Publisher: American Heart Association

  6. Campbell, B.C.V., Khatri, P.: Stroke. Lancet 396(10244), 129–142 (2020). https://doi.org/10.1016/S0140-6736(20)31179-X. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31179-X/abstract. Publisher: Elsevier

  7. Campbell, B.C.V., et al.: Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke, 42(12), 3435–3440 (2011). https://doi.org/10.1161/STROKEAHA.111.618355. https://www.ahajournals.org/doi/10.1161/strokeaha.111.618355. Publisher: American Heart Association

  8. Carrera, E., Wintermark, M.: Imaging-based selection of patients for acute stroke treatment: is it ready for prime time? Neurology 88(24), 2242–2243 (2017). https://doi.org/10.1212/WNL.0000000000004051

    Article  Google Scholar 

  9. Chen, Y., Li, Y., Zheng, Y.: Ensembles of modalities fused model for ischemic stroke lesion segmentation, p. 1

    Google Scholar 

  10. Clèrigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Comput. Biol. Med. 115, 103487 (2019). https://doi.org/10.1016/j.compbiomed.2019.103487. http://www.sciencedirect.com/science/article/pii/S0010482519303555

  11. Jenkinson, M., Pechaud, M., Smith, S.: BET2 - MR-Based Estimation of Brain, Skull and Scalp Surfaces, p. 1

    Google Scholar 

  12. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11) (2013). https://doi.org/10.2196/jmir.2930. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841349/

  13. Klug, J., et al.: Integrating regional perfusion CT information to improve prediction of infarction after stroke. J. Cerebr. Blood Flow Metab. (2020). https://doi.org/10.1177/0271678X20924549. https://journals.sagepub.com/doi/10.1177/0271678X20924549. Publisher: SAGE PublicationsSage UK: London, England

  14. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. arXiv:1409.5185 [cs, stat] (2014)

  15. Liu, P.: Stroke lesion segmentation with 2D novel CNN pipeline and novel loss function. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 253–262. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_25

    Chapter  Google Scholar 

  16. Lucas, C., Aulmann, L., Kemmling, A., Madany Mamlouk, A., Heinrich, M.: Estimation of the principal ischaemic stroke growth directions for predicting tissue outcomes, pp. 69–79 (2020). https://doi.org/10.1007/978-3-030-46640-4_7

  17. Maier, O., et al.: ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017). https://doi.org/10.1016/j.media.2016.07.009

    Article  Google Scholar 

  18. Kim, M., Patrick, T., Greg, Z.: Artificial intelligence applications in stroke. Stroke 51(8), 2573–2579 (2020). https://doi.org/10.1161/STROKEAHA.119.027479. https://www.ahajournals.org/doi/10.1161/STROKEAHA.119.027479. Publisher: American Heart Association

  19. Muschelli, J., Ullman, N.L., Mould, W.A., Vespa, P., Hanley, D.F., Crainiceanu, C.M.: Validated automatic brain extraction of head CT images. Neuroimage 114, 379–385 (2015). https://doi.org/10.1016/j.neuroimage.2015.03.074

    Article  Google Scholar 

  20. Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K.: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 49(6), 1394–1401 (2018). https://doi.org/10.1161/STROKEAHA.117.019740. https://www.ahajournals.org/doi/full/10.1161/strokeaha.117.019740. Publisher: American Heart Association

  21. Nogueira, R.G., et al.: DAWN trial investigators: thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378(1), 11–21 (2018). https://doi.org/10.1056/NEJMoa1706442

    Article  Google Scholar 

  22. Nosrati, M.S., Hamarneh, G.: Incorporating prior knowledge in medical image segmentation: a survey. arXiv:1607.01092 [cs] (2016)

  23. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464. Conference Name: IEEE Transactions on Medical Imaging

    Article  Google Scholar 

  24. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas, p. 10

    Google Scholar 

  25. Péez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. arXiv:2003.04696 [cs, eess, stat] (2020)

  26. Robben, D., et al.: Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning. Med. Image Anal. 59, 101589 (2020). https://doi.org/10.1016/j.media.2019.101589. http://www.sciencedirect.com/science/article/pii/S136184151930129X

  27. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019). https://doi.org/10.1016/j.media.2019.01.012. http://www.sciencedirect.com/science/article/pii/S1361841518306133

  28. Song, T., Huang, N.: Integrated extractor, generator and segmentor for ischemic stroke lesion segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 310–318. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_31

    Chapter  Google Scholar 

  29. Straka, M., Albers, G.W., Bammer, R.: Real-time diffusion-perfusion mismatch analysis in acute stroke. J. Magn. Reson. Imaging: JMRI, 32(5), 1024–1037 (2010). https://doi.org/10.1002/jmri.22338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975404/

  30. Yu, Y., et al.: Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw. Open 3(3), e200772–e200772 (2020). https://doi.org/10.1001/jamanetworkopen.2020.0772. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2762679. Publisher: American Medical Association

  31. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Klug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klug, J., Leclerc, G., Dirren, E., Preti, M.G., Van De Ville, D., Carrera, E. (2021). Bayesian Skip Net: Building on Prior Information for the Prediction and Segmentation of Stroke Lesions. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics