Skip to main content

Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Included in the following conference series:

Abstract

Semantic segmentation plays an essential role in brain tumor diagnosis and treatment planning. Yet, manual segmentation is a time-consuming task. That fact leads to hire the Deep Neural Networks to segment brain tumor. In this work, we proposed a variety of 3D U-Net, which can achieve comparable segmentation accuracy with less graphic memory cost. To be more specific, our model employs a modified attention block to refine the feature map representation along the skip-connection bridge, which consists of parallelly connected spatial and channel attention blocks. Dice coefficients for enhancing tumor, whole tumor, and tumor core reached 0.752, 0.879 and 0.779 respectively on the BRATS- 2020 valid dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  2. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). (1811)

    Google Scholar 

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  5. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  6. Agravat, R.R., Raval, M.S.: Deep learning for automated brain tumor segmentation in MRI images. In: Soft Computing Based Medical Image Analysis, pp. 183–201. Elsevier (2018)

    Google Scholar 

  7. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

  8. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  10. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Ha, Q., et al.: MFNet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2017)

    Google Scholar 

  12. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  13. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  14. Abraham, N., Khan, N.M.: A novel focal Tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE (2019)

    Google Scholar 

  15. Li, S., et al.: Attention dense-u-net for automatic breast mass segmentation in digital mammogram. IEEE Access 7, 59037–59047 (2019)

    Article  Google Scholar 

  16. Cheng, D., et al.: SeNet: structured edge network for sea–land segmentation. IEEE Geosci. Remote Sens. Lett. 14(2), 247–251 (2016)

    Article  Google Scholar 

  17. Mondal, A.K., Dolz, J., Desrosiers, C.: Few-shot 3D multi-modal medical image segmentation using generative adversarial learning. CoRR abs/1810.12241 (2018). https://arxiv.org/abs/1810.12241

Download references

Acknowledge

The project is supported by Sichuan Science and Technology Program. It is partially funded by Grant SCITLAB-0013 of Intelligent Terminal Key Laboratory of SiChuan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Haoxiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jun, W., Haoxiang, X., Wang, Z. (2021). Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics