Skip to main content

Overall Survival Prediction for Glioblastoma on Pre-treatment MRI Using Robust Radiomics and Priors

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Included in the following conference series:

Abstract

Patients with Glioblastoma multiforme (GBM) have a very low overall survival (OS) time, due to the rapid growth an invasiveness of this brain tumor. As a contribution to the overall survival (OS) prediction task within the Brain Tumor Segmentation Challenge (BraTS), we classify the OS of GBM patients into overall survival classes based on information derived from pre-treatment Magnetic Resonance Imaging (MRI). The top-ranked methods from the past years almost exclusively used shape and position features. This is a remarkable contrast to the current advances in GBM radiomics showing a benefit of intensity-based features. This discrepancy may be caused by the inconsistent acquisition parameters in a multi-center setting. In this contribution, we test if normalizing the images based on the healthy tissue intensities enables the robust use of intensity features in this challenge. Based on these normalized images, we test the performance of 176 combinations of feature selection techniques and classifiers. Additionally, we test the incorporation of a sequence and robustness prior to limit the performance drop when models are applied to unseen data. The most robust performance on the training data (accuracy: \(0.52\pm 0.09\)) was achieved with random forest regression, but this accuracy could not be maintained on the test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  2. Bae, S., et al.: Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289(3), 797–806 (2018). https://doi.org/10.1148/radiol.2018180200. http://pubs.rsna.org/doi/10.1148/radiol.2018180200

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  4. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  6. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  8. Ellingson, B.M., Wen, P.Y., Cloughesy, T.F.: Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14(2), 307–320 (2017). https://doi.org/10.1007/s13311-016-0507-6

    Article  Google Scholar 

  9. van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339. https://cancerres.aacrjournals.org/content/77/21/e104

  10. Hegi, M.E., et al.: MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl. J. Med. 352(10), 997–1003 (2005)

    Article  Google Scholar 

  11. Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H.: nnU-Net: breaking the spell on successful medical image segmentation, vol. 1, pp. 1–8. arXiv preprint arXiv:1904.08128 (2019)

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  13. Kickingereder, P., et al.: Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3), 880–889 (2016). https://doi.org/10.1148/radiol.2016160845. http://fsl.fmrib

  14. Kickingereder, P., et al.: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20(5), 728–740 (2019). https://doi.org/10.1016/S1470-2045(19)30098-1

  15. Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-10649-8

  16. Mazziotta, J., et al.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. Roy. Soc. Lond. Ser. B: Biol. Sci. 356(1412), 1293–1322 (2001)

    Google Scholar 

  17. Menze, B.H., Jakab, A., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  18. Papanikolaou, N., Matos, C., Koh, D.M.: How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 20, 1–10 (2020). https://doi.org/10.1186/s40644-020-00311-4

    Article  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Reuter, M., Rosas, H.D., Fischl, B.: Highly accurate inverse consistent registration: a robust approach. NeuroImage 53(4), 1181–1196 (2010). https://doi.org/10.1016/J.NEUROIMAGE.2010.07.020

    Article  Google Scholar 

  21. Saha, A., Yu, X., Sahoo, D., Mazurowski, M.A.: Effects of MRI scanner parameters on breast cancer radiomics. Expert Syst. Appl. 87, 384–391 (2017)

    Article  Google Scholar 

  22. Stupp, R., et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl. J. Med. 352(10), 987–996 (2005). https://doi.org/10.1056/NEJMoa043330

    Article  Google Scholar 

  23. Suchorska, B., et al.: Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro-Oncol. 18(4), 549–556 (2016). https://doi.org/10.1093/neuonc/nov326https://doi.org/10.1093/neuonc/nov326

    Article  Google Scholar 

  24. Suter, Y., et al.: Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20(1), 1–13 (2020)

    Article  Google Scholar 

  25. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  26. Weller, M., et al.: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas (2017). https://doi.org/10.1016/S1470-2045(17)30194-8

  27. Weninger, L., Rippel, O., Koppers, S., Merhof, D.: Segmentation of brain tumors and patient survival prediction: methods for the BraTS 2018 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_1

    Chapter  Google Scholar 

  28. Yeo, I., Johnson, R.A.: A new family of power transformations to improve normality or symmetry. Biometrika 87(4), 954–959 (2000). https://doi.org/10.1093/biomet/87.4.954

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding received from the Swiss Cancer League (Krebsliga Schweiz), grant KFS-3979-08-2016 and the NVIDIA Corporation for donating a Titan Xp GPU. Computations were partly performed on Ubelix, the HCP cluster at the University of Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suter, Y., Knecht, U., Wiest, R., Reyes, M. (2021). Overall Survival Prediction for Glioblastoma on Pre-treatment MRI Using Robust Radiomics and Priors. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics