Skip to main content

A Deep Supervision CNN Network for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

The brain tumor segmentation is essential for diagnosis and treatment of brain diseases. However, most of current 3D deep learning technologies require large number of magnetic resonance images (MRIs). In order to make full use of small dataset like BraTS 2020, we propose a deep supervision-based 2D residual U-net for efficient and automatic brain tumor segmentation. In our network, residual blocks are used to alleviate the gradient dispersion caused by excessive depth of network, while multiple deep supervision branches are used as the regularization of the network, they can improve the training stability and enable the encoder to extract richer visual features. The CBICA’s IPP’s evaluation of the segmentation results verifies the effectiveness of our method. The average Dice of ET, WT and TC are 0.7593, 0.8726 and 0.7879 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKinley, R., Rebsamen, M., Meier, R., Wiest, R.: Triplanar ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 379–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_36

    Chapter  Google Scholar 

  2. Zhao, Y.-X., Zhang, Y.-M., Liu, C.-L.: Bag of tricks for 3D MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 210–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_20

    Chapter  Google Scholar 

  3. Zhou, C., Chen, S., Ding, C., Tao, D.: Learning contexualand attentive information for brain tumor segmentation. In: Pre-conference Proceedings of the 2018 7th MICCAI BraTS Challenge, pp. 571–578 (2018)

    Google Scholar 

  4. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  5. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  6. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)

  7. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  8. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maierhein, K.H.: Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge. In: 2017 Proceedings of the 6th MICCAI BraTS Challenge, pp. 100–107 (2017)

    Google Scholar 

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maierhein, K.H.: No new-net. In: 2018 Pre-conference Proceedings of the 7th MICCAI BraTS Challenge, pp. 222–231 (2018)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Zhou, Z.W., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.M.: UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Anylysis and Multimodal Learning for Clinical Decision Support, pp. 3–11 (2018)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261–2269 (2017)

    Google Scholar 

  15. Zhang, X., Jian, W., Cheng, K.: 3D dense U-nets for brain tumor segmentation. In: 2018 Pre-conference Proceedings of the 7th MICCAI BraTS Challenge, pp. 562–570 (2018)

    Google Scholar 

  16. Stawiaski, J.: Leveraging a DenseNet encoder pre-trained on ImageNet for brain tumor segmentation. In: 2018 Pre-conference Proceedings of the 7th MICCAI BraTS Challenge, pp. 438–447 (2018)

    Google Scholar 

  17. Mckinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: 2018 Pre-conference Proceedings 7th MICCAI BraTS Challenge, pp. 322–330 (2018)

    Google Scholar 

  18. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  19. Weninger, L., Liu, Q., Merhof, D.: Multi-task learning for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 327–337. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_31

    Chapter  Google Scholar 

  20. Zhou, C., Ding, C., Lu, Z., Wang, X., Tao, D.: One-pass multi-task convolutional neural networks for efficient brain tumor segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 637–645. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_73

    Chapter  Google Scholar 

  21. Chen, S., Bortsova, G., García-Uceda Juárez, A., van Tulder, G., de Bruijne, M.: Multi-task attention-based semi-supervised learning for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 457–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_51

    Chapter  Google Scholar 

  22. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  23. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th International Conference on 3D Vision (3DV). IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Zhang, Z., Ding, J., Li, X., Tang, J., Guo, F. (2021). A Deep Supervision CNN Network for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics