Skip to main content

Segmentation, Survival Prediction, and Uncertainty Estimation of Gliomas from Multimodal 3D MRI Using Selective Kernel Networks

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Abstract

Segmentation of gliomas into distinct sub-regions can help guide clinicians in tasks such as surgical planning, prognosis, and treatment response assessment. Manual delineation is time-consuming and prone to inter-rater variability. In this work, we propose a deep learning based automatic segmentation method that takes T1-pre, T1-post, T2, and FLAIR MRI as input and outputs a segmentation map of the sub-regions of interest (enhancing tumor (ET), whole tumor (WT), and tumor core (TC)). Our U-Net based architecture incorporates a modified selective kernel block to enable the network to adjust its receptive field via an attention mechanism, enabling more robust segmentation of gliomas of all appearances, shapes, and scales. Using this approach on the official BraTS 2020 testing set, we obtain Dice scores of .822, .889, and .834, and Hausdorff distances (95%) of 11.588, 4.812, and 21.984 for ET, WT, and TC, respectively. For prediction of overall survival, we extract deep features from the bottleneck layer of this network and train a Cox Proportional Hazards model, obtaining .495 accuracy. For uncertainty prediction, we achieve AUCs of .850, .914, and .854 for ET, WT, and TC, respectively, which earned us third place for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016). https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection [Data Set]. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Article  Google Scholar 

  4. Bakas, S., et al.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection [Data set]. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Article  Google Scholar 

  5. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge (2018)

    Google Scholar 

  6. Beers, A., et al.: High-resolution medical image synthesis using progressively grown generative adversarial networks (2018)

    Google Scholar 

  7. Beers, A., et al.: DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics (2020). https://doi.org/10.1007/s12021-020-09477-5

  8. Beers, A., Chang, K., Brown, J., Gerstner, E., Rosen, B., Kalpathy-Cramer, J.: Sequential neural networks for biologically informed glioma segmentation. In: Angelini, E.D., Landman, B.A. (eds.) Medical Imaging 2018: Image Processing, vol. 10574, pp. 807–816. International Society for Optics and Photonics, SPIE (2018). https://doi.org/10.1117/12.2293941

  9. Beig, N., et al.: Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma. Sci. Rep. 8(1), 7 (2018). https://doi.org/10.1038/s41598-017-18310-0

  10. Chang, K., et al.: Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018). https://doi.org/10.1158/1078-0432.CCR-17-2236, https://clincancerres.aacrjournals.org/content/24/5/1073

  11. Chang, K., et al.: Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology 21(11), 1412–1422 (2019). https://doi.org/10.1093/neuonc/noz106

  12. Eckel-Passow, J.E., et al.: Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. New Engl. J. Med. 372(26), 2499–2508 (2015). https://doi.org/10.1056/NEJMoa1407279, pMID: 26061753

  13. Gerstner, E.R., et al.: Bevacizumab reduces permeability and concurrent temozolomide delivery in a subset of patients with recurrent glioblastoma. Clin. Cancer Res. 26(1), 206–212 (2020). https://doi.org/10.1158/1078-0432.CCR-19-1739, https://clincancerres.aacrjournals.org/content/26/1/206

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks (2018)

    Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015)

    Google Scholar 

  17. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. CoRR abs/1809.10483 (2018), http://arxiv.org/abs/1809.10483

  18. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 231–241. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-11726-9

    Chapter  Google Scholar 

  19. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data (2017)

    Google Scholar 

  20. Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 10353 (2017). https://doi.org/10.1038/s41598-017-10649-8

  21. Li, X., Wang, W., Hu, X., Yang, J.: Selective Kernel Networks (2019)

    Google Scholar 

  22. Loshchilov, I., Hutter, F.: Decoupled Weight Decay Regularization (2017)

    Google Scholar 

  23. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300–312 (2004). https://doi.org/10.1016/j.ijrobp.2004.01.026

  24. Menze, B.H., et al.: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

  25. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation (2016)

    Google Scholar 

  26. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization (2018)

    Google Scholar 

  27. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of ICML, vol. 27, pp. 807–814 (2010)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. CoRR abs/1505.0 (2015), http://arxiv.org/abs/1505.04597

  29. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908, https://www.ncbi.nlm.nih.gov/pubmed/20378467

  30. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: Convolutional Block Attention Module (2018)

    Google Scholar 

  31. Wu, Y., He, K.: Group Normalization (2018)

    Google Scholar 

  32. Zhao, Y., Zhang, Y.M., Liu, C.L.: Bag of Tricks for 3D MRI Brain Tumor Segmentation, pp. 210–220, May 2020. https://doi.org/10.1007/978-3-030-46640-4_20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, J. et al. (2021). Segmentation, Survival Prediction, and Uncertainty Estimation of Gliomas from Multimodal 3D MRI Using Selective Kernel Networks. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics