Abstract
Convolutional Neural Networks (CNNs) are the state of the art in many medical image applications, including brain tumor segmentation. However, no successful studies using CNNs have been reported for survival prediction in glioma patients. In this work, we present two different solutions: tumor segmentation and the other for survival prediction. We proposed using an ensemble of asymmetric U-Net like architectures to improve segmentation results in the enhancing tumor region and the use of a DenseNet model for survival prognosis. We quantitatively compare deep learning with classical regression and classification models based on radiomics features and growth tumor models features for survival prediction on the BraTS 2020 database, and we provide an insight into the limitations of these models to accurately predict survival. Our method's current performance on the BraTS 2020 test set is dice scores of 0.80, 0.87, and 0.80 for enhancing tumor, whole tumor, and tumor core, respectively, with an overall dice of 0.82. For the survival prediction task, we got a 0.57 accuracy. In addition, we proposed a voxel-wise uncertainty estimation of our segmentation method that can be used effectively to improve brain tumor segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ostrom, Q.T., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(suppl. 4), iv1–63 (2014). https://doi.org/10.1093/neuonc/nou223.
Ellor, S.V., Pagano-Young, T.A., Avgeropoulos, N.G.: Glioblastoma: background, standard treatment paradigms, and supportive care considerations. J. Law Med. Ethics 42(2), 171–182 (2014). https://doi.org/10.1111/jlme.12133
Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117
Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv:1811.02629 [cs, stat], April 2019 (2020). https://arxiv.org/abs/1811.02629. Accessed 22 April
Bakas, S., et al.: Segmentation Labels for the Pre-operative Scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)
Bakas, S., et al.: Segmentation Labels for the Pre-operative Scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv:1505.04597 [cs], May 2015, https://arxiv.org/abs/1505.04597. Accessed 22 Apr 2020
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
McKinley, R., Rebsamen, M., Meier, R., Wiest, R.: Triplanar Ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 379–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_36
Zhao, Y.-X., Zhang, Y.-M., Liu, C.-L.: Bag of tricks for 3D MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 210–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_20
Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22
Lambin, P., et al.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012). https://doi.org/10.1016/j.ejca.2011.11.036
Shboul, Z.A., Vidyaratne, L., Alam, M., Iftekharuddin, K.M.: Glioblastoma and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 358–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_31
Feng, X., Dou, Q., Tustison, N., Meyer, C.: Brain tumor segmentation with uncertainty estimation and overall survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 304–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_29
Agravat, R.R., Raval, M.S.: Brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 338–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_32
Weninger, L., Haarburger, C., Merhof, D.: Robustness of radiomics for survival prediction of brain tumor patients depending on resection status. Front. Comput. Neurosci. 13 (2019). https://doi.org/10.3389/fncom.2019.00073.
Wang, S., Dai, C., Mo, Y., Angelini, E., Guo, Y., Bai, W.: Automatic brain tumour segmentation and biophysics-guided survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 61–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_6
Suter, Y., et al.: Deep learning versus classical regression for brain tumor patient survival prediction. arXiv:1811.04907 [cs], November 2018. https://arxiv.org/abs/1811.04907. Accessed 22 July 2020
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. Presented at the Thirty-First AAAI Conference on Artificial Intelligence, February 2017. https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806. Accessed 22 Apr 2020
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks, January 2018, arXiv:1608.06993 [cs]. https://arxiv.org/abs/1608.06993. Accessed 21 July 2020
Pedregosa, F., et al.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2
Baldock, A.L., et al.: Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS ONE 9(10), e99057 (2014). https://doi.org/10.1371/journal.pone.0099057
Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7, September 2017. https://doi.org/10.1038/s41598-017-10649-8.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
González, S.R., Zemmoura, I., Tauber, C. (2021). 3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-72087-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72086-5
Online ISBN: 978-3-030-72087-2
eBook Packages: Computer ScienceComputer Science (R0)