Skip to main content

3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

Convolutional Neural Networks (CNNs) are the state of the art in many medical image applications, including brain tumor segmentation. However, no successful studies using CNNs have been reported for survival prediction in glioma patients. In this work, we present two different solutions: tumor segmentation and the other for survival prediction. We proposed using an ensemble of asymmetric U-Net like architectures to improve segmentation results in the enhancing tumor region and the use of a DenseNet model for survival prognosis. We quantitatively compare deep learning with classical regression and classification models based on radiomics features and growth tumor models features for survival prediction on the BraTS 2020 database, and we provide an insight into the limitations of these models to accurately predict survival. Our method's current performance on the BraTS 2020 test set is dice scores of 0.80, 0.87, and 0.80 for enhancing tumor, whole tumor, and tumor core, respectively, with an overall dice of 0.82. For the survival prediction task, we got a 0.57 accuracy. In addition, we proposed a voxel-wise uncertainty estimation of our segmentation method that can be used effectively to improve brain tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ostrom, Q.T., et al.: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(suppl. 4), iv1–63 (2014). https://doi.org/10.1093/neuonc/nou223.

  2. Ellor, S.V., Pagano-Young, T.A., Avgeropoulos, N.G.: Glioblastoma: background, standard treatment paradigms, and supportive care considerations. J. Law Med. Ethics 42(2), 171–182 (2014). https://doi.org/10.1111/jlme.12133

    Article  Google Scholar 

  3. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  4. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv:1811.02629 [cs, stat], April 2019 (2020). https://arxiv.org/abs/1811.02629. Accessed 22 April

  5. Bakas, S., et al.: Segmentation Labels for the Pre-operative Scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  6. Bakas, S., et al.: Segmentation Labels for the Pre-operative Scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  7. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv:1505.04597 [cs], May 2015, https://arxiv.org/abs/1505.04597. Accessed 22 Apr 2020

  9. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  10. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  12. McKinley, R., Rebsamen, M., Meier, R., Wiest, R.: Triplanar Ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 379–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_36

    Chapter  Google Scholar 

  13. Zhao, Y.-X., Zhang, Y.-M., Liu, C.-L.: Bag of tricks for 3D MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 210–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_20

    Chapter  Google Scholar 

  14. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  15. Lambin, P., et al.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012). https://doi.org/10.1016/j.ejca.2011.11.036

    Article  Google Scholar 

  16. Shboul, Z.A., Vidyaratne, L., Alam, M., Iftekharuddin, K.M.: Glioblastoma and survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 358–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_31

    Chapter  Google Scholar 

  17. Feng, X., Dou, Q., Tustison, N., Meyer, C.: Brain tumor segmentation with uncertainty estimation and overall survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 304–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_29

    Chapter  Google Scholar 

  18. Agravat, R.R., Raval, M.S.: Brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 338–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_32

    Chapter  Google Scholar 

  19. Weninger, L., Haarburger, C., Merhof, D.: Robustness of radiomics for survival prediction of brain tumor patients depending on resection status. Front. Comput. Neurosci. 13 (2019). https://doi.org/10.3389/fncom.2019.00073.

  20. Wang, S., Dai, C., Mo, Y., Angelini, E., Guo, Y., Bai, W.: Automatic brain tumour segmentation and biophysics-guided survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 61–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_6

    Chapter  Google Scholar 

  21. Suter, Y., et al.: Deep learning versus classical regression for brain tumor patient survival prediction. arXiv:1811.04907 [cs], November 2018. https://arxiv.org/abs/1811.04907. Accessed 22 July 2020

  22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. Presented at the Thirty-First AAAI Conference on Artificial Intelligence, February 2017. https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806. Accessed 22 Apr 2020

  23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks, January 2018, arXiv:1608.06993 [cs]. https://arxiv.org/abs/1608.06993. Accessed 21 July 2020

  24. Pedregosa, F., et al.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  26. Baldock, A.L., et al.: Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS ONE 9(10), e99057 (2014). https://doi.org/10.1371/journal.pone.0099057

    Article  Google Scholar 

  27. Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7, September 2017. https://doi.org/10.1038/s41598-017-10649-8.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, S.R., Zemmoura, I., Tauber, C. (2021). 3D Brain Tumor Segmentation and Survival Prediction Using Ensembles of Convolutional Neural Networks. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics