Skip to main content

Cerberus: A Multi-headed Network for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

The automated analysis of medical images requires robust and accurate algorithms that address the inherent challenges of identifying heterogeneous anatomical and pathological structures, such as brain tumors, in large volumetric images. In this paper, we present Cerberus, a single lightweight convolutional neural network model for the segmentation of fine-grained brain tumor regions in multichannel MRIs. Cerberus has an encoder-decoder architecture that takes advantage of a shared encoding phase to learn common representations for these regions and, then, uses specialized decoders to produce detailed segmentations. Cerberus learns to combine the weights learned for each category to produce a final multi-label segmentation. We evaluate our approach on the official test set of the Brain Tumor Segmentation Challenge 2020, and we obtain dice scores of 0.807 for enhancing tumor, 0.867 for whole tumor and 0.826 for tumor core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. Nat. Sci. Data 4, 170117 (2017)

    Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  5. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. CoRR abs/1811.02629 (2018). http://arxiv.org/abs/1811.02629

  6. Brügger, R., Baumgartner, C.F., Konukoglu, E.: A partially reversible u-net for memory-efficient volumetric image segmentation. CoRR abs/1906.06148 (2019). http://arxiv.org/abs/1906.06148

  7. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P., Khan, A. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019–22nd International Conference, Shenzhen, China, 13–17 October 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11766, pp. 184–192. Springer (2019). https://doi.org/10.1007/978-3-030-32248-9_21

  8. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video recognition. CoRR abs/1807.11195 (2018). http://arxiv.org/abs/1807.11195

  9. Cheng, G., Cheng, J., Luo, M., He, L., Tian, Y., Wang, R.: Effective and efficient multitask learning for brain tumor segmentation. J. Real-Time Image Proc. 17(6), 1951–1960 (2020). https://doi.org/10.1007/s11554-020-00961-4

    Article  Google Scholar 

  10. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: Backpropagation without storing activations. CoRR abs/1707.04585 (2017). http://arxiv.org/abs/1707.04585

  11. Imai, H., Matzek, S., Le, T.D., Negishi, Y., Kawachiya, K.: High resolution medical image segmentation using data-swapping method. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 238–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_27

    Chapter  Google Scholar 

  12. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II, pp. 234–244 (2018). https://doi.org/10.1007/978-3-030-11726-9_21

  13. Li, X., Luo, G., Wang, K.: Multi-step cascaded networks for brain tumor segmentation. CoRR abs/1908.05887 (2019). http://arxiv.org/abs/1908.05887

  14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  15. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. CoRR abs/1902.09063 (2019). http://arxiv.org/abs/1902.09063

  16. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H.J., Menze, B.H., Reyes, M. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - Third International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, 14 September 2017, Revised Selected Papers. Lecture Notes in Computer Science, vol. 10670, pp. 178–190. Springer (2017). https://doi.org/10.1007/978-3-319-75238-9_16

  17. Wu, Y., He, K.: Group normalization. CoRR abs/1803.08494 (2018). http://arxiv.org/abs/1803.08494

  18. Xu, H., Xie, H., Liu, Y., Cheng, C., Niu, C., Zhang, Y.: Deep cascaded attention network for multi-task brain tumor segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Daza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daza, L., Gómez, C., Arbeláez, P. (2021). Cerberus: A Multi-headed Network for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics