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Abstract. Gliomas are brain tumours with a high mortality rate. There
are various grades and sub-types of this tumour, and the treatment pro-
cedure varies accordingly. Clinicians and oncologists diagnose and cate-
gorise these tumours based on visual inspection of radiology and histol-
ogy data. However, this process can be time-consuming and subjective.
The computer-assisted methods can help clinicians to make better and
faster decisions. In this paper, we propose a pipeline for automatic classi-
fication of gliomas into three sub-types: oligodendroglioma, astrocytoma,
and glioblastoma, using both radiology and histopathology images. The
proposed approach implements distinct classification models for radio-
graphic and histologic modalities and combines them through an ensem-
ble method. The classification algorithm initially carries out tile-level (for
histology) and slice-level (for radiology) classification via a deep learning
method, then tile/slice-level latent features are combined for a whole-
slide and whole-volume sub-type prediction. The classification algorithm
was evaluated using the data set provided in the CPM-RadPath 2020
challenge. The proposed pipeline achieved the F1-Score of 0.886, Co-
hen’s Kappa score of 0.811 and Balance accuracy of 0.860. The ability of
the proposed model for end-to-end learning of diverse features enables it
to give a comparable prediction of glioma tumour sub-types.

Keywords: Glioma classification - Digital pathology - Multimodal MRI.

1 Introduction

Gliomas are tumours of the brain parenchyma which are typically graded from I
(low severity) to IV (high severity), and the five-year survival rates are 94%
(for grade I) and 5% (for higher grades) [11]. Magnetic Resonance Imaging
(MRI) has been widely used in examining gliomas during diagnosis, surgical plan-
ning and follow-up. Clinical protocols include T1-weighted (T1w), T2-weighted
(T2w), fluid-attenuated inversion recovery (FLAIR), and gadolinium-enhanced
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T1-Weighted (Gd-T1w) imaging. T1lw, T2w and FLAIR show the tumour lesion
and oedema whereas Gd-T 1w shows regions of blood-brain-barrier disruption [1].
However, due to the complex tumour micro-environment and spatial heterogene-
ity, MRI itself is not sufficient for complete characterisation of gliomas (e.g. grad-
ing and sub-typing) and for high-grade cases histopathology examination is often
required [6]. In histopathology, gliomas are classified based on the morphological
features of the glial cells including increased cellularity, vascular proliferation,
necrosis, and infiltration into normal brain parenchyma [11,17]. Oncologists ex-
amine patients’ medical history, radiology scans, pathology slides and reports
to provide suitable medical care for a person diagnosed with cancer. This de-
cision making is often subjective and time-consuming. Machine learning offers
powerful tools (e.g. deep learning methods) to support automated, faster and
more objective clinical decision making. One active area of research is to design
data processing pipelines that can effectively combine imaging data at different
spatial domains (e.g. micro-scale histology and macro-scale MRI data). These
pipelines would enable image-based precision medicine to improve treatment
quality [7,9]. Recent efforts in automatic classification of gliomas using histology
and radiology was reviewed by Kurc et al. [12].

In this study, we respond to the CPM-RadPath 2020 challenge and propose
a data processing pipeline that classifies gliomas into three sub-types: oligoden-
droglioma, astrocytoma, and glioblastoma. In our approach, we analysed radi-
ology and histopathology data independently using separate densely connected
networks. We then combined the outcomes of each network using a probabilistic
ensemble method to arrive at the final sub-type prediction. We used our pipeline
to analyse data from a cohort of 35 patients and the results have been submitted
to the challenge board.

2 Related Work

In this section, we summarise the work submitted by the participants for the pre-
vious similar challenge in CPM-RadPath 2019 (https://www.med.upenn.edu/
cbica/cpm-rad-path-2019). Ma et al. [13], as the first ranked group, proposed
two convolutional neural networks to predict the grade of gliomas from both
radiology and pathology data: (i) a 2D ResNet-based model for pathology patch
based image classification and (ii) a 3D DenseNet-based model for classifying
the detected regions (using a detection model) on multi-parametric MRI (mp-
MRI) images. To extract the pathology patches (512 x 512) they used mean and
standard deviation with predefined thresholds to consider patches including cells
and excluding patches with background contents. To avoid the effect of intensity
variations, they converted the original RGB pathology images into gray-scale
images. Then the labels of all extracted patches were set to the labels of the
entire WSI image. On the radiology side, they used a detection model that was
trained on the BraTS2018 (https://www.med.upenn.edu/sbia/brats2018.html)
dataset and used the output of this model (detected abnormality) as the input
for the 3D DenseNet model to perform the classification on the MRI volumes.
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Finally, the prediction results from these two modalities were concatenated using
the multinomial logistic regression, resulting in F1-score=0.943 for the validation
set. Pei et al. [14] only used the mp-MRI data. They implemented two regular
3D convolutional neural networks (CNN) to analyse MRI data: (i) the first CNN
was trained on the BraTS 2019 (https://www.med.upenn.edu/cbica/brats2019/
data.html) dataset to differentiate tumourous and normal tissues; and (ii) the
other CNN was trained on the CPM-RadPath 2019 dataset to do tumour classi-
fication. They performed z-score normalization to reduce the impact of intensity
inhomogeneity and reported the Fl-score=0.764 for the validation set. Chan et
al. [4] used two neural networks, including VGG16 and ResNet50, to process the
patches extracted from the whole slide images. For the radiology analysis, they
used the brain-tumour segmentation method (based on the SegNet) that was
developed in the BraTS2018 challenge to obtain the core region of the tumour.
Using the predicted regions, they used the pyradiomics module to extract 428
radiomic features. They also used the k-means clustering and random forest to
only include relevant pathology patches. Finally, they calculated the sum of the
probabilities to produce an ensemble prediction. They compared the prediction
results with and without MRI features and found out that the classification
models based on MRI radiomic features did not perform as accurate as the
whole-slide features. Xue et al. [16] used a dual-path residual convolutional neu-
ral network to perform classification. For analysing radiology data, they used
their custom designed U-Network to predict tumour region mask from MRI im-
ages. This network was trained on data from the BraTS2019 challenge. Then
3D and 2D ResNetl8 CNN architectures were used jointly on detected MRI
regions and selected pathology patches (extracted with the pixel resolution of
512 x 512), respectively. They reported the accuracy of 84.9% on the validation
set, and concluded that combining the two image sources yielded a better overall
accuracy.

Our proposed method does not use any external data and annotation, and
does not require the pre-identification of the abnormality on the radiology data.
We use the raw data (without changing them to gray scale or without doing the
extensive sub-scaling that reduces the data quality) and feed this data to the
models for sub-type prediction. In addition, this approach is not computationally
expensive and is fast in the inference phase.

3 Methodology

3.1 Dataset

To train and validate our pipeline, we used the challenge dataset (https://
zenodo.org/record/3718894). The dataset consists of multi-institutional paired
mp-MRI scans and digital pathology whole slide images (WSIs) of brain gliomas,
obtained from the same patients. For each subject, a diagnostic classification
label, confirmed by pathology, is provided as ‘A’ (Lower grade astrocytoma,
IDH-mutant (Grade II or III)), ‘O’ (Oligodendroglioma, IDH-mutant, 1p/19q
codeleted (Grade IT or TIT)) and ‘G’ (Glioblastoma and Diffuse astrocytic glioma,
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IDH-wildtype (Grade IV)). There are three data subsets: training, validation,
and testing with 221, 35, and 73 co-registered radiology and histology subjects,
respectively. Considering the training subset released by the challenge in the
training phase, there were 133, 54, and 34 samples provided for the ‘G’, ‘O’ and
‘A’ classes, respectively. The radiology data consists of four modalities: T1w,
T2w, Gd-T1w, and FLAIR volumes, acquired with different clinical protocols.
The provided data are distributed after their pre-processing, co-registered to the
same anatomical template, interpolated to the same resolution (1 mm?), and
skull-stripped. The histopathology data contains one WSI for each patient, cap-
tured from Hematoxylin and Eosin (H&E) stained tissue specimens. The tissue
specimens were scanned with different magnifications and the pixel resolutions.

3.2 Deep learning model: Densely Connected Network (DCN)

Our deep learning classification model is primarily derived from DenseNet archi-
tecture [8]. DenseNet is a model notable for its key characteristic of bypassing
signals from preceding layers to subsequent layers that enforce optimal informa-
tion flow in feature maps. The DenseNet model comprises a total of L layers,
while each layer is responsible for implementing a specific non-linear transforma-
tion. A dense-block consists of multiple densely connected layers and all layers
are directly connected. At the end of the last dense-block, a global average pool-
ing is performed to minimize over-fitting and reduce the model’s number of
parameters. We have used specific configurations of this model (called DCN).
In the histology DCN (DCN1), the block configuration of [2, 2, 2, 2] was used
while in the radiology based DCN (DCN2), the block configuration was set to
[6, 12, 36, 24]. The DCN architecture is shown in Fig. la. These configurations
were selected by training more than 50 models with different block parameters
and were empirically chosen. The network growth-rate, which defines the num-
ber of filters to add in each layer was set to 32 and 24 for DCN1 and DCN2,
respectively. The initial convolution layer contained 64 filters in DCN1 and 48
filters in DCN2 to learn and the multiplicative factor for the number of bottle
neck layers was set to 4 with zero dropout rate after each dense layer, as defined
in [8].

3.3 Histological phase analysis

The process of selecting representative tiles to be used during the training phase
is very important and can be labor-intensive. Weakly-supervised approaches [15]
only use the slide labels as supervision during the training of the aggrega-
tion model. Some other approaches adopt the multiple instance learning (MIL)
method, assuming that the slide label is represented by the existence of positive
tiles [3]. To automatically classify WSIs, we have adopted a three-stage approach.
In the first stage, multiple recognizable tiles/patches of size 2000 x 2000 pixels
without any overlaps were selected form the WSI. Each tile was assigned with
the slide’s label if it included more than 80% cellularity information. These tiles
were counted as positive tiles, which belonged to a specific class of ‘A’, ‘O’ or ‘G’.
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(a) The DCN architecture used for the glioma classification.
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(b) Models trained on different modalities are combined with an ensemble method to
predict the patient’s glioma sub-types.

Fig. 1: The proposed pipeline using multi-modality data to classify glioma sub-
types.

The histology images were representative of slides generated in a true pathology
laboratory, including common slide preparation and digitisation artifacts, such
as air bubbles, folds, cracks, striping, and blurred regions. To avoid the need
for quality control and background removal, we added a new category in the
classification problem called ‘N’ representing “None” and negative class. All the
tiles (i) located on the tissue-background regions (with 80% background region),
(ii) containing any artefacts addressed earlier, and (iii) representing hemorrhage
were labeled as the class ‘N’. So, the tiles with more than 95% of pixels exceeding
80% intensity on all three RGB channels were considered. The extracted tiles
(positive and negative) were then investigated visually to reassure false tiles were
not included in the training set. Due to the different number of samples provided
in each class, we extracted various numbers of positive tiles from WSIs of a class
considering the pixel resolution variation. This information is provided in Ta-
ble 1. We selected a balanced number of samples for each class. For example,
considering the samples with the 0.25 resolution, we selected 853, 921, 807, and
900 tiles for the ‘A’, ‘G’, ‘O’ and ‘N’ classes, respectively. In the second stage,
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we trained the explained DCN on small image tiles extracted from WSIs at high
resolution (see Figure 1b). Overall, two models were trained: a model for WSIs
with pixel resolution of 0.50 and the other model for WSIs with pixel resolution
of 0.25. Each tile was then encoded to a feature vector of a low dimension and a
prediction score. The output of the DenseNet model was a tile/patch-wise prob-
ability prediction. In the third stage, an ensemble approach based on weighted
probability prediction major voting was used to integrate the obtained tile level
information for whole slide level prediction. For the second stage, we have used
the provided slide level labels for the supervision without using any external,
extensive, pixel-wise annotations from pathologists. It is important to mention
that we assigned the slide label to the extracted patches. This idea of assigning
the same label to all extracted patches from the WSI might be criticised since
all parts of the WSI might not represent the same information which could lead
to a correct classification of the tumour sub-type. To answer this concern, we
emphasize that the final prediction was based on the abundance prediction of
one of the three desired sub-types.

3.4 Radiological phase analysis

There are several pipelines proposed for automatic prediction of glioma sub-
types using MRI data [12]. Most of these approaches are based on analysing
radiomics in terms of high-dimensional quantitative features extracted from a
large number of medical images. Several approaches initially perform segmenta-
tion, followed by the classification based on the detected bounding box of the
region of interest [5]. The performance of these approaches is affected by the de-
tection and segmentation outcome. We adopted the similar classification scheme
used in Section 3.3 to analyse different MRI modalities. For each modality, the
slices in each volume were considered either negative (without any lesions appar-
ent) or positive (with a visible lesion). Each positive slice could belong to one of
the target classes (‘A’, ‘G’, and ‘O’). With this approach, we avoided the need for
lesion segmentation in brain volumes. The initial preparation steps for the MRI
slices included (i) visually categorising all the slices provided for each modality
into negative and positive and (ii) preparing the training and validation subsets
for training with the proportion of 90% and 10% of the prepared categorised
data, respectively. Considering that there were fewer samples provided for the
‘A’ class, and the fact that we wanted to include a balanced number of samples in
each class during the training, we selected 1500 samples for each class. Then we

Table 1: Number of selected samples from each class using the histology data.

Class Resolution = 0.25 Resolution = 0.50
Provided cases Extracted tiles Provided cases Extracted tiles

O 91 10 12 R

A 46 10 3 20

G 31 31 3 50
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trained a DCN on image slices from each modality volume (see Fig. 1b). So, four
models were trained. Each slice was encoded to the latent feature vector of a low
dimension and a prediction score. The outputs of these models, trained for each
modality, were slice-based probability predictions. Subsequently, the weighted
average operation was applied to the probability predictions to integrate the
obtained slice level information for the whole brain volume. In this classifica-
tion approach, we have used the provided volume level labels for the supervision
without using any external pixel-wise lesion masks from radiologists.

3.5 Training DCNs

We randomly split the provided training dataset (radiology and histology) into
training and validation sets (90% and 10%, respectively), making sure that the
validation samples did not overlap with the training samples. Data augmen-
tation was performed to increase the number of training samples by applying
random flipping, rotations, scaling and cropping. The final softmax classifier of
the DCN contained 4 output nodes that would predict the probability for each
class based on the extracted features in the network. The models were imple-
mented in PyTorch and trained via the Adam optimisation algorithm [10] for
the cross-entropy loss with mini-batches of size 128. We trained the histology
model (DCNT1) for 300 epochs while the radiology based models (DCN2) were
trained for 500 epochs. All models were trained independently using an initial
learning rate of 0.001, without any step-down policy and weight-decay. The loss
function was calculated for each task on all samples in the batch with known
ground truth labels and averaged to a global loss. Then the predicted loss for
the slide label was back-propagated through the model. The training process
in terms of loss decrease and accuracy improvement for each of these models is
shown in Fig. 2.

3.6 Outcome integration and final sub-type prediction

It is common to use the combination of histology and MRI data in deep learn-
ing approaches to predict the class of gliomas. In this work, we used a deep
learning-based method (DCN) for the classification of gliomas. The dataset in
each modality was used for training an independent DCN model. Initially, the
outputs of these models were either tile-wise or slice-wise probability predictions.
Therefore, an ensemble approach based on probability prediction and major vot-
ing was used to integrate the obtained tile-level/slice-level information for the
whole histology slide or MRI volume. Then the outcomes from five models (one
for histology and four for radiology) were integrated with the same ensemble
approach based on confidence prediction and major voting. All modality predic-
tions were used for the final classification prediction of a patient.
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Fig. 2: The training process in terms of loss decrease and accuracy improvement
for models trained on each modality. Pixel resolution for histology images=0.25.

4 Results and Discussion

We trained five models (4 radiology based models and 1 histology based model
when pixel resolution=0.25). The F1-Score of the combined model on the train-
ing subset was 0.946. Further evaluation of these models were separately per-
formed on the provided validation dataset and the evaluation metrics were cal-
culated by the online web-portal of the challenge. Table 2 shows the classifica-
tion performance of these models. These results show that among multiple MRI
modalities, T2w was able to extract more salient latent features while hyper-
intense FLAIR did not reflect the morphological complexity underlying tumour
accurately. The agreement between T1lw and Gd-T1w was also observed with
regards to the classification performance. However, the model trained on the
histology tiles achieved the best performance of F1-Score=0.771 compared to
other MRI modalities. This illustrated the existence of an abundant amount of
information in the histological images which led to the extraction of more dis-
tinct latent features to be used by the softmax classifier, which is crucial for high
quality clinical decision support. Combining the outcomes from all the models
reduced the F1-Score to 0.714. This was expected because including three modal-
ities (T1w, Gd-T1w, and FLAIR) with more false positive and false negatives
along with the major voting could deviate the prediction agreement and affect
the final results. However, using the best predictions from histology, T2w and
Gd-T1w achieved the best performance of F1-Score = 0.886. Apart from the
quantified results, we visually investigated several histology samples that were
correctly classified in the first validation set (derived from the provided training
subset). Based on morphological features, we observed that astrocytomas con-
tained hyperchromatic nuclei, with prominent nucleoli. Oligodendrogliomas were
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Table 2: Classification performance of each model, evaluated on the validation
set provided by the CPM-RadPath 2020 challenge. Pixel resolution for histology
images=0.25.

Modality F1-Score|Kappa|Balance accuracy
MRI FLAIR 0.543 | 0.346 0.634
MRI T1w 0.400 | 0.143 0.429
MRI Gd-T1w 0.600 | 0.433 0.723
MRI T2w 0.714 | 0.519 0.632
Histology 0.771 | 0.606 0.682
Combined Histology + MRI T2w 4+ MRI Gd-T1w| 0.886 |0.811 0.860
Combined Histology and MRIs 0.714 | 0.554 0.723

mostly represented as round nuclei surrounded by a clear cytoplasmic halo (like
fried egg-shaped) and glioblastomas showed a densely cellular tumour with vari-
ation in the gross appearance of the viable tumour along with more necrosis.
These observations meet the clinical observations addressed by Bertero et al. [2].

5 Conclusion

In this paper, we proposed using specific versions of DenseNet (called DCN) for
sub-typing the glioma into astrocytoma, oligodendroglioma, and glioblastoma
classes from the MRI and histology images provided by the CPM-RadPath-2020
organisers. The evaluations of the five trained models indicated that the com-
bination of radiographic with histologic image information can improve glioma
classification performance when careful training is performed in terms of curated
data, model architecture, and ensemble approach.
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