Skip to main content

Label Definitions Augmented Interaction Model for Legal Charge Prediction

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

  • 2528 Accesses

Abstract

Charge prediction, determining charges for cases by analyzing the textual fact descriptions, is a fundamental technology in legal information retrieval systems. In practice, the fact descriptions could exhibit a significant intra-class variation due to factors like non-normative use of language by different users, which makes the prediction task very challenging, especially for charge classes with too few samples to cover the expression variation. In this work, we explore to use the charge (label) definitions to alleviate this issue. The key idea is that the expressions in a fact description should have corresponding formal terms in label definitions, and those terms are shared across classes and could account for the diversity in the fact descriptions. Thus, we propose to create auxiliary fact representations from charge definitions to augment fact descriptions representation. Specifically, we design label definitions augmented interaction model, where fact description interacts with the relevant charge definitions and terms in those definitions by a sentence- and word-level attention scheme, to generated auxiliary representations. Experimental results on two datasets show that our model achieves significant improvement than baselines, especially for dataset with few samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://cail.cipsc.org.cn/index.html.

  2. 2.

    In CAIL2018 dataset, CAIL150k is ./exercise_contest/data_train.json. CAIL30k is ./final_test.json. They share the same validation and test set (./exercise_contest/data_valid.json and data_test.json).

  3. 3.

    https://github.com/fxsjy/jieba.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bao, Q., Zan, H., Gong, P., Chen, J., Xiao, Y.: Charge prediction with legal attention. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11838, pp. 447–458. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32233-5_35

    Chapter  Google Scholar 

  3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent twitter sentiment classification. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (vol. 2: Short papers). vol. 2, pp. 49–54 (2014)

    Google Scholar 

  6. Ebesu, T., Shen, B., Fang, Y.: Collaborative memory network for recommendation systems. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 515–524. ACM (2018)

    Google Scholar 

  7. Gao, T., Han, X., Liu, Z., Sun, M.: Hybrid attention-based prototypical networks for noisy few-shot relation classification (2019)

    Google Scholar 

  8. Hu, Z., Li, X., Tu, C., Liu, Z., Sun, M.: Few-shot charge prediction with discriminative legal attributes. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 487–498 (2018)

    Google Scholar 

  9. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  12. Kumar, A., et al.: Ask me anything: Dynamic memory networks for natural language processing. In: International Conference on Machine Learning, pp. 1378–1387 (2016)

    Google Scholar 

  13. Lin, W.C., Kuo, T.T., Chang, T.J., Yen, C.A., Chen, C.J., Lin, S.D.: Exploiting machine learning models for Chinese legal documents labeling, case classification, and sentencing prediction. In: Processdings of ROCLING, p. 140 (2012)

    Google Scholar 

  14. Liu, C.-L., Hsieh, C.-D.: Exploring phrase-based classification of judicial documents for criminal charges in Chinese. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 681–690. Springer, Heidelberg (2006). https://doi.org/10.1007/11875604_75

    Chapter  Google Scholar 

  15. Liu, C.-L., Liao, T.-M.: Classifying criminal charges in Chinese for web-based legal services. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 64–75. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31849-1_8

    Chapter  Google Scholar 

  16. Luo, B., Feng, Y., Xu, J., Zhang, X., Zhao, D.: Learning to predict charges for criminal cases with legal basis. arXiv preprint arXiv:1707.09168 (2017)

  17. Sinha, K., Dong, Y., Cheung, J.C.K., Ruths, D.: A hierarchical neural attention-based text classifier. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 817–823 (2018)

    Google Scholar 

  18. Sulea, O.M., Zampieri, M., Malmasi, S., Vela, M., Dinu, L.P., van Genabith, J.: Exploring the use of text classification in the legal domain. arXiv preprint arXiv:1710.09306 (2017)

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  20. Wang, S., Mazumder, S., Liu, B., Zhou, M., Chang, Y.: Target-sensitive memory networks for aspect sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers), pp. 957–967 (2018)

    Google Scholar 

  21. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks for reading comprehension and question answering. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers), pp. 189–198 (2017)

    Google Scholar 

  22. Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint arXiv:1410.3916 (2014)

  23. Xiao, C., et al.: Cail 2018: A large-scale legal dataset for judgment prediction. arXiv preprint arXiv:1807.02478 (2018)

  24. Xiong, C., Merity, S., Socher, R.: Dynamic memory networks for visual and textual question answering. In: International Conference on Machine Learning, pp. 2397–2406 (2016)

    Google Scholar 

  25. Yang, W., Jia, W., Zhou, X., Luo, Y.: Legal judgment prediction via multi-perspective bi-feedback network. arXiv preprint arXiv:1905.03969 (2019)

  26. Ye, H., Jiang, X., Luo, Z., Chao, W.: Interpretable charge predictions for criminal cases: Learning to generate court views from fact descriptions. arXiv preprint arXiv:1802.08504 (2018)

  27. Zhong, H., Zhipeng, G., Tu, C., Xiao, C., Liu, Z., Sun, M.: Legal judgment prediction via topological learning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3540–3549 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R&D Program of China (2018YFC0831302), National Natural Sciences Foundation of China (61972386), and Youth Innovation Promotion Association at Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Lingqiao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, L., Liu, J., Liu, L., Ye, D. (2021). Label Definitions Augmented Interaction Model for Legal Charge Prediction. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics