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Abstract. Concept normalization in free-form texts is a crucial step in
every text-mining pipeline. Neural architectures based on Bidirectional
Encoder Representations from Transformers (BERT) have achieved state-
of-the-art results in the biomedical domain. In the context of drug dis-
covery and development, clinical trials are necessary to establish the
efficacy and safety of drugs. We investigate the effectiveness of trans-
ferring concept normalization from the general biomedical domain to
the clinical trials domain in a zero-shot setting with an absence of la-
beled data. We propose a simple and effective two-stage neural approach
based on fine-tuned BERT architectures. In the first stage, we train a
metric learning model that optimizes relative similarity of mentions and
concepts via triplet loss. The model is trained on available labeled cor-
pora of scientific abstracts to obtain vector embeddings of concept names
and entity mentions from texts. In the second stage, we find the closest
concept name representation in an embedding space to a given clinical
mention. We evaluated several models, including state-of-the-art archi-
tectures, on a dataset of abstracts and a real-world dataset of trial records
with interventions and conditions mapped to drug and disease terminolo-
gies. Extensive experiments validate the effectiveness of our approach in
knowledge transfer from the scientific literature to clinical trials.

Keywords: clinical trials · natural language processing · neural net-
works · entity linking · medical concept normalization · metric learning
· negative sampling · BERT

1 Introduction

The emerging use of neural network architectures in the early-stage of drug
discovery has recently resulted in several breakthroughs [50,20]. Later stages of
drug development are much more conservative due to the complicated process of
clinical trials. The use of state-of-the-art neural network approaches in clinical
trials could dramatically speed up the overall drug development process and
increase its success rate, thus saving lives.

Clinical trial registers (e.g., ClinicalTrials.gov) contain vast amounts of struc-
tured information on how standardized interventions work in a clinical setting.

http://arxiv.org/abs/2101.09311v1
https://insilico.com/
https://clinicaltrials.gov/
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Despite the existing structure, these registers remain very difficult to harmo-
nize with drug and disease databases using current techniques. This very often
results in substantial information losses. The primary cause for this inaccurate
harmonization is that in a clinical trial record diseases and interventions are
not described with a centralized standardized taxonomy but with a free text.
The automatic natural language processing (NLP) methods are promising ap-
proaches for the semantic annotation of large volumes of clinical records and for
the integration and standardization of biomedical entity mentions to formal con-
cepts. In biomedical research and healthcare, the entity linking problem is known
as medical concept normalization (MCN). A source as a knowledge base (KB)
contains further information about the concept, such as its preferred name and
synonyms, pharmacological profile, and its relationships with other concepts.

Neural architectures have been widely used in recent state-of-the-art models
for MCN from user reviews and social media texts [22,49,51,25,31,44]. These
studies mostly share limitations regarding a supervised classification framework:
binary or multiclass classifiers are trained on a dataset with a narrow subsample
of concepts from a specific terminology. In particular, recent models [22,49,51]
learn a scoring function measuring the similarity between an entity mention and
a concept. The difficulty with these methods is that it is not possible to extract
representations describing mentions and concepts separately. In this setup, to
retrieve concepts from a particular terminology for a given entity mention, we
have to compute all the similarities through the ranking function and sort these
scores in descending order. This is impractical if we need to process large corpora
of free-form clinical trials, scientific literature, patents in days.

Inspired by metric learning [18,38,16], its usage for multimodal and sen-
tence representation learning [28,37], negative sampling [32], and Bidirectional
Encoder Representations from Transformers (BERT) [10], we present a BERT-
based neural model for medical concept normalization that directly optimizes the
BioBERT representations [23] of entity mentions and concept names itself, rather
than classification or ranking layer. We use triplets of free-form entity mention,
positive concept names, and randomly sampled concept names as negative exam-
ples to train our model. In this work, we consider the zero-shot scenario because
it is often the case in the biomedical domain, where there are dozens of concept
categories and terminologies. We trained models on annotated pairs of disease
or chemical mentions with the corresponding concepts and evaluated on a novel
dataset of condition and intervention concepts from clinical trials.

The contributions of this paper can be summarized as follows:

1. We develop a simple and effective model that uses metric learning and neg-
ative sampling to obtain entity and concept embeddings. These embeddings
were utilized for knowledge transfer between different terminologies. We ex-
plore several strategies to select positive and negative samples.

2. We perform extensive experiments of several BERT-based models on a newly
annotated dataset of clinical trials in two setups, where each mention is
associated with one or more concepts (in-KB) or zero (out-of-KB).
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2 Related Work

Our work most closely relates to research in information extraction and semantic
textual similarity by directly linking a set of entity mentions and a large set of
medical concept names using triplet structures to derive embeddings of entity
mentions and concept names that can be compared using semantic similarity.
Entity linking of mentions to entries in a knowledge base (KB) is a well-studied
area; see a good survey [40]. Research studies in this area assume that there is
one knowledge base, such as Wikipedia or Freebase. The KB contains rich text
descriptions (from an entity page, for example), hyperlink statistics, and meta-
data. This assumption holds for the general domain, but not for the biomedical
domain, where diverse terminologies exist for numerous purposes.

2.1 Medical Concept Normalization

Medical concept normalization is usually formulated as a classification or rank-
ing problem with a wide variety of features – syntactic and morphological pars-
ing, dictionaries of medical concepts and their synonyms, distances between raw
entity mentions and formal concept names in terms of TF-IDF or word2vec rep-
resentations [1,12,45,22,9]. MetaMap is one of the most well-known knowledge-
based systems for mapping texts to concepts from Unified Medical Language Sys-
tem (UMLS) [3] developed by the US National Library of Medicine (NLM) [1].
This system is based on a linguistic approach using lexical lookup and variants
by associating a score with phrases in a sentence. The NLM provides automatic
indexing of clinical trials to Medical Subject Headings (MeSH) [6] via the Med-
ical Text Indexer (MTI) [33] based on MetaMap. MTI achieves an F1 measure
around 0.55 on the indexing of PubMed abstracts. The most popular open-source
supervised system maintained by the NLM is TaggerOne [22]. TaggerOne uti-
lizes semi-Markov models with features and dictionaries to jointly perform entity
extraction and normalization tasks.

The works that are the closest to ours and consider synonyms during entity
and concept representation learning is Biomedical Named Encoder (BNE) [35]
and BioSyn [41]. Sung et al. proposed a BioBERT-based model named BioSyn
that maximizes the probability of all synonym representations in the top 20 can-
didates [41]. BioSyn uses a combination of two scores, sparse and dense, as a
similarity function. Sparse scores are calculated on character-level TF-IDF rep-
resentations to encode morphological information of given strings. Dense scores
are defined by the similarity between CLS tokens of a single vector of input
in BioBERT. This model achieves state-of-the-art results in disease and chem-
ical mapping over previous works [22,47,35]. Phan et al. presented an encod-
ing framework with new context, concept, and synonym-based objectives [35].
Synonym-based objective enforces similar representations between synonymous
names, while concept-based objective pulls the name’s representations closer to
its concept’s centroid. However, ranking on these embeddings shows worse results
on three sets than TaggerOne.
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Our work differs from the studies discussed above in the following important
aspects. First, none of these methods have been applied to free-form descriptions
of conditions and interventions from clinical trials. Second, evaluation strategies
in the mentioned papers are based on train/test splits provided by datasets’
authors. We follow the recent refined evaluation strategy from [43] on the cre-
ation of test sets without duplicates or exact overlaps between the train and test
sets. Finally, our dataset includes entity mentions for both in-KB and out-of-KB
linking.

2.2 NLP in Clinical Trials Research

While the majority of biomedical research on information extraction primarily
focused on scientific literature [17], much less work had been used NLP methods
to conduct curation of clinical trial records’ fields to advance downstream tasks
[11,5,2,4,15,39]. Gayvert et al. [11] proposed an approach for the prediction of
the likelihood of toxicity in clinical trials. They selected 108 clinical trials of any
phase that were annotated as having failed for toxicity reasons. Then intervention
names of each trial were manually mapped to DrugBank [46] concepts to collect
molecular weight, polar surface area, and other compounds’ properties. In [2],
Atal et al. developed a knowledge-based approach to classify entity mentions to
disease categories from a Global Burden of Diseases (GBD) cause list. The pro-
posed method uses MetaMap to extract UMLS concepts from trial fields (health
condition, public title, and scientific title), link UMLS concepts with ICD10
codes, and classify ICD10 codes to candidate GBD categories. The developed
classifier identified GBD categories for 78% of the trials. Li and Lu [26] identified
clinical pharmacogenomics (PGx) information from clinical trial records based
on dictionaries from a pharmacogenomics knowledge base PharmGKB. Previous
studies on clinical trial records, however, have not analyzed the performance of
linking of clinical trials to disease and drug concepts, but rather across eligibility
criteria (e.g., patient’s demographic, disease category) [4,15,39,2,24].

3 Dataset of Clinical Trials

NLM maintains a clinical trial registry data bank ClinicalTrials.gov1 that con-
tains over 340,000 trials from 214 countries. This database includes comprehen-
sive scientific and clinical investigations in biomedicine [13]. Each trial record
provides information about a trial’s title, purpose, description, condition, inter-
vention, eligibility, sponsors, etc. Most information from records is described in
natural language. In our study, we use publicly available American Association
of Clinical Trials (AACT) Database2, v. 20200201.

Since there is no off-the-shelf manually annotated dataset for biomedical
concept normalization of clinical trials, we built one by selecting 500 trials using
the following criteria:

1 https://clinicaltrials.gov/
2 https://www.ctti-clinicaltrials.org/aact-database

https://clinicaltrials.gov/
https://www.ctti-clinicaltrials.org/aact-database
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1. A type of clinical study is an interventional study. Participants of interven-
tional studies receive intervention/treatment so that researchers can evaluate
the effects of the interventions on biomedical or health-related outcomes [29].

2. Phase of clinical study is defined by U.S. Food and Drug Administration
(FDA). There are five phases: Early Phase 1, Phase 1, Phase 2, Phase 3, and
Phase 4.

3. Clinical study is associated with one or more interventions of the following
types: Biological, Combination Product, Drug.

As a drug terminology source, we use an internal knowledge base that con-
tains 15,532 concept unique identifiers (CUIs), including small molecule drugs,
biologics, nutraceuticals, and experimental drugs. As a condition terminology
source, we use MeSH v. 20200101. 500 selected trials contain 1075 and 819 en-
tries in the ‘Intervention’ and ‘Condition’ fields respectively. Two annotators
with a background in bioinformatics manually annotated each entry. The calcu-
lated inter-annotator agreement (IAA) using Kappa was 92.32% for the entire
dataset. The disagreement was resolved through mutual consent.

Statistics of annotated texts are summarized in Table 1. 794 out of 1075 non-
unique mentions (73.9%) were mapped to one or more drug concepts. 838 (80%)
of lower-cased interventions are unique. 804 out of 819 non-unique mentions
(98.2%) were mapped to one or more concepts, while there are 638 (78%) lower-
cased unique mentions. Interestingly, MeSH concepts linked to conditions belong
to several MeSH categories including Diseases [C], Psychiatry and Psychology
[F], and Analytical, Diagnostic and Therapeutic Techniques, and Equipment
[E]. We note that NLM provided automatically assigned MeSH terms to trials’
interventions. 716 out of 1075 entries (66.6%) were mapped to MeSH terms. Our
analysis revealed that mapping from NLM does not include investigational drugs,
which are essential for developing new pharmaceutical drugs. Table 2 contains a
sample of annotated texts.

4 Model

In this section, we present a neural model for Drug and disease Interpretation
Learning with Biomedical Entity Representation Transformer (DILBERT). We
address MCN as a retrieval task by fine-tuning the BERT-based network using
metric learning [18,38,16], negative sampling [32], specifically, triplet constraints.
This idea was successfully applied to learn multimodal embeddings [48,28] and
recent sentence embeddings via a sentence-BERTmodel [37]. Compared to a pair
of independent sentences or images, two concept names can have relationships
as synonyms, hypernyms, hyponyms, etc., that we consider during the training
phase to facilitate the concept ranking task at the retrieval phase.

Let us first recall two terms: concept and concept name. Following the UMLS
Glossary [34], the concept is the fundamental unit of meaning in terminology.
It represents a single meaning in any way, whether formal or casual, verbose
or abbreviated. Every concept is assigned a unique identifier (CUI). A concept
consists of atoms, which are the smallest units of naming. All of the atoms within
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Table 1. Statistics of annotated texts.

Mention #texts #texts with
CUIs

#unique texts #unique texts
with CUIs

Intervention types

Drug 850 693 671 585
Biological 118 90 102 79
Other 57 4 27 4
Procedure 19 1 16 1
Radiation 11 0 9 0
Device 11 1 11 1
Combination Product 5 3 5 3
Dietary Supplement 2 2 2 2
Diagnostic Test 1 0 1 0
Behavioral 1 0 1 0

Total

Intervention 1075 794 838 671
Condition 819 804 638 638

a concept are synonymous. The concept name is a string chosen to represent
the concept as a whole. It is linked to atoms. Formally, the medical concept
normalization task aims to assign each entity mention m a CUI (or predicts that
there is no corresponding concept).

Architecture Following denotations proposed by [19], we encode both entity men-
tion m and candidate concept name c into vectors:

ym = red(T (m)); yc = red(T (c)) (1)

where T is the transformer that is allowed to update during fine-tuning. red(·) is
a function that reduces that sequence of vectors into one vector. There are two
main ways of reducing the output into one representation via red(·): choose the
first output of T (corresponding to the token CLS) or compute the elementwise
average over all output vectors to obtain a fixed-size vector. As a pretrained
transformer model, we use BioBERT base v1.1. [23]

Scoring The score of a candidate ci for an entity mentionm is given by a distance
metric, e.g. Euclidean distance:

s(m, ci) = ||ym − yci || (2)

A noteworthy aspect of the proposed model is its scope: by design, it aims
at the cross-terminology mapping of entity mentions to a given lexicon without
additional re-training. This approach allows for fast, real-time inference, as all
concept names from a terminology can be cached. This is a necessary requirement
for processing biomedical documents of different subdomains such as clinical
trials, scientific literature and drug labels.
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Table 2. Sample of manually annotated trials’ texts.

NCT / Type Text Concept

Intervention (with DrugBank CUIs)

NCT00559975
/ Biological

Adjuvanted influenza vaccine com-
bine with CpG7909

Agatolimod sodium (DB15018)

NCT01575756
/ Biological

Haemocomplettan® P or Ri-
aSTAPTM

Fibrinogen human (DB09222)

NCT00081484
/ Drug

epoetin alfa or beta Erythropoietin (DB00016)

NCT03375593
/ Drug

Ibuprofen 600 mg tab Ibuprofen (DB01050)

NCT01170442
/ Drug

vitamin D3 5000 IU Calcitriol (DB00136)

NCT02493335
/ Drug

Placebo orodispersible tablet twice
daily

nil (no concept)

Condition (with MeSH CUIs)

NCT02009605 Squamous Cell Carcinoma of Lung Carcinoma, Non-Small-Cell
Lung (D002289)

NCT04169763 Stage IIIC Vulvar Cancer AJCC v8 Vulvar Neoplasms (D014846)

Optimization The network is trained using a triplet objective function. Given
a user-generated entity mention m, a positive concept name cg and a negative
concept name cn, triplet loss tunes the network such that the distance between
m and cg is smaller than the distance between m and cn. Mathematically, we
minimize the following loss function:

max(s(m, cg)− s(m, cn) + ǫ, 0) (3)

where ǫ is margin that ensures that cg is at least ǫ closer to m than cn. As a
scoring metric, we use Euclidean distance or cosine similarity and we set ǫ = 1
in our experiments.

Positive and Negative Sampling Suppose that a pair of the entity mention with
the corresponding CUI is given as well as the vocabulary. For positive examples,
vocabulary is restricted to the concepts that have the same CUI as a mention.
Multiple positive concept names could be explained by the presence of synonyms
in the vocabulary. Negative sampling [32] uses the rest part of the vocabulary. We
explore several strategies to select positive and negative samples for a training
pair (entity mention, CUI):

1. random sampling: we sample several concept names with the same CUI
as positive examples and random negatives from the rest of the vocabulary;

2. random + parents: we sample k concept names from the concept’s par-
ents in addition to positive and negative names gathered with the random
sampling strategy;

3. re-sampling: using a model trained with random sampling, we identify
positives and hard negatives via the following steps: (i) encode all mentions
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and concept names found in training pairs using the current model, (ii)
select positives with the same CUI, which are closest to a mention, (iii) for
each mention, retrieve the most similar k concept names (i.e., its nearest
neighbors) and select all names that are ranked above the correct one for
the mention as negative examples. We follow this strategy from [14];

4. re-sampling + siblings: we modify the re-sampling strategy by using k

concept names from the concept’s siblings as negatives.

Inference At inference time, the representation for all concept names can be
precomputed and cached. The inference task is then reduced to finding the clos-
est concept name representation to entity mention representation in a common
embedding space.

5 Experiments

We evaluate our model DILBERT and compare it to the state-of-the-art methods
using (i) a publicly available benchmark BioCreative V CDR Disease & Chemical
[27], (ii) our dataset of clinical trials named CT Condition & Intervention. The
statistics of the two datasets are summarized in Table 3.

5.1 Datasets

BioCreative V CDR [27] introduces a challenging task for the extraction of
chemical-disease relations (CDR) from PubMed abstracts. Disease and chemical
mentions are linked to the MEDIC [8] and CTD [7] dictionaries, respectively. We
utilize the CTD chemical dictionary (v. November 4, 2019) that consists of pf
171,203 CUIs and 407,247 synonyms, and the MEDIC lexicon (v. July 6, 2012)
that contains 11,915 CUIs and 71,923 synonyms.

According to the BioCreative V CDR annotation guidelines, the annota-
tors used two MeSH branches to annotate entities: (i) “Diseases” [C], includ-
ing signs and symptoms, (ii) “Drugs and Chemicals” [D]. The terms “drugs”
and “chemicals” are often used interchangeably. Annotators annotated chemical
nouns convertible to single atoms, ions, isotopes, pure elements and molecules
(e.g., calcium, lithium), class names (e.g., steroids, fatty acids), small biochemi-
cals, synthetic polymers.

As shown in [43], the CDR dataset contains a high amount of mention dupli-
cates and overlaps between official sets. In order to obtain more realistic results,
we evaluate models on preprocessed official and refined CDR test sets from [43].

For the preprocessing of the clinical trial data, we use heuristic rules to split
the composite mentions into separate mentions (e.g., combination of ribociclib

+ capecitabine into ribociclib and capecitabine) by considering each mention
containing “combination”, “combine”, “combined”, “plus”, “vs” or “+” as com-
posite. We process all characters to lowercase forms and remove the punctuation
for both mentions and synonyms.
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Table 3. Statistics of the datasets used in the experiments. Two sets of annotated
clinical trials’ fields are marked with ‘CT’.

CDR Disease CDR Chem CT Condition CT Intervention

domain abstracts abstracts clinical trials clinical trials
entity type disease chemicals conditions drugs
terminology MEDIC CTD Chemicals MeSH in-house dict.

entity level statistics

% numerals 0.11% 7.32% 7.69% 25.3%
% punctuation 1.21% 0.07% 14.28% 24.83%
avg. len 14.88 11.27 17.92 21.68

number of pre-processed entity mentions

train set 4,182 5,203 - -
dev set 4,244 5,347 100 100
test set 4,424 5,385 719 975

number of pre-processed entity mentions after removal of duplicates from test set

refined test 657 (14.9%) 425 (7.9%) 642 (78.4%) 846 (78.7%)

It is assumed that each entity mention in the CDR corpus has a valid concept
in the terminology, which is referred as in-KB evaluation in the entity linking
task. In contrast with the CDR sets, 26% and 1.8% of intervention and condition
mentions in the CT dataset are not appeared in terminologies, respectively. In
Section 5.4, we investigate different strategies for the out-of-KB prediction (i.e.
nil prediction) on clinical trials’ texts.

5.2 Baseline Methods

We compare our proposed method with the following methods.

BioBERT ranking This is a baseline model that used the BioBERT model for
encoding mention and concept representations. Each entity mention or concept
name is firstly passed through BioBERT (we use the average over all outputs of
BERT) and then through a mean pooling layer to yield a fixed-sized vector. The
inference task is then reduced to finding the closest concept name representation
to entity mention representation in a common embedding space. We use the
Euclidean distance as the distance metric. The nearest concept names are chosen
as top-k concepts for entities. We use the publicly available code provided by [43]
at https://github.com/insilicomedicine/Fair-Evaluation.

BioSyn BioSyn [41] is a recent state-of-the-art model that utilizes the synonym
marginalization technique and the iterative candidate retrieval. The model uses
two similarity functions based on sparse and dense representations, respectively.
The sparse representation encodes the morphological information of given strings
via TF-IDF, the dense representation encodes the semantic information gathered
from BioBERT. For reproducibility, we use the publicly available code provided
by the authors at https://github.com/dmis-lab/BioSyn. We follow the de-
fault parameters of BioSyn as in [41]: the number of top candidates k is 20, the

https://github.com/insilicomedicine/Fair-Evaluation
https://github.com/dmis-lab/BioSyn
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mini-batch size is 16, the learning rate is 1e-5, the dense ratio for the candidate
retrieval is 0.5, 20 epochs for training.

5.3 Experimental Setup

We experiment with BioBERTbase v1.1 with 12 heads, 12 layers, 768 hidden
units per layer, and a total of 110M parameters. Epsilon, the number of positive
and negative examples, and distance metric were chosen optimally on dev sets.
We choose red(·) to be the average over all outputs of BERT. We have evaluated
different epsilons starting from 0.5 up to 4.0 with 0.5 step for Euclidean distance
metric, for cosine distance from 0.05 up to 0.3 with 0.05 step. These experiments
have quite similar results. We have evaluated a number of positive and negative
examples. For positives, we iterated over values from 15 to 35, for negatives
from 5 to 15. We found that the optimal is to sample 30 positive examples and 5
negative examples per mention. For the random + parents strategy, we evaluated
the number of names of concept’s parents from 1 to 5. Similarly, we evaluated the
number of names of concept’s siblings from 1 to 5. We found that hard negative
sampling (with siblings) achieves the same optima as random negative sampling.
The highest metrics are achieved at 5 concept names of the concept’s parents
on the CT Condition and CDR Chemical sets. The highest accuracy is achieved
at 2 names of the concept’s parents on other sets. As a result, we trained the
DILBERT model with Euclidean distance and the following parameters: batch
size is equal to 48, learning rate was set to 1e-5, epsilon to 1.0.

We evaluate this solution in information retrieval (IR) scenario, where the
goal is to find within a dictionary of concept names and their identifiers the top-k
concepts for every entity mention in texts. In particular, we use the top-k ac-
curacy as an evaluation metric, following the previous works [42,36,47,35,41,43].
Let Acc@k be 1 if a right CUI is retrieved at rank k, otherwise 0. All models
are evaluated with Acc@1. For composite entities, we define Acc@k as 1 if each
prediction for a single mention is correct.

5.4 Out-of-KB Cases in Clinical Trials

To deal with nil predictions in clinical trials, we apply three different strategies
for the selection of a threshold value. Namely, the intervention or condition men-
tion is considered out of KB if the nearest candidate has a larger distance than
a threshold value. Our first strategy is to set the threshold equal to the mini-
mum distance of false-positive (FP) cases. In this case, we consider a mention
mapped to a concept by our model but having no appearance in the terminology.
Our second strategy set the threshold to the maximum distance of true-positive
(TP) cases. The third strategy uses a weighted average of the first two thresh-
old values. The proportion of TP cases used as a weight for the first strategy’s
threshold, the proportion of TP cases used as a weight for the second strat-
egy’s threshold. We tested three strategies on the dev set which containing 100
randomly selected mentions and evaluated the selected threshold values on the
test set. This procedure was repeated 20 times. For intervention normalization,
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Table 4. Out-of-domain performance of the proposed DILBERT model and baselines
in terms of Acc@1 on the refined test set of clinical trials (CT).

Model
CT Condition CT Intervention

single concept full set single concept full set

BioBERT ranking 72.60 71.74 78.67 74.57

BioSyn 86.36 - 86.29 -

DILBERT, random sampling 85.73 84.85 90.23 88.37
DILBERT, random + 2 parents 86.74 86.36 90.53 87.94
DILBERT, random + 5 parents 87.12 86.74 89.54 87.15

DILBERT, resampling 85.22 84.63 89.83 87.28
DILBERT, resampling + 5 siblings 84.84 84.26 89.26 86.23

Table 5. In-domain performance of the proposed DILBERT model in terms of Acc@1
on the refined test set of the Biocreative V CDR corpus.

Model CDR Disease CDR Chemical

BioBERT ranking 66.4 80.7

BioSyn 74.1 83.8

DILBERT, random sampling 75.5 81.4
DILBERT, random + 2 parents 75.0 81.2
DILBERT, random + 5 parents 73.5 81.4

DILBERT, resampling 75.8 83.3
DILBERT, resampling + 5 siblings 75.3 82.1

the first strategy showed an average accuracy of 79.41 with std of 3.5; second –
accuracy of 71.77 and std of 3.5; third – accuracy of 85.73, std of 1.3.

5.5 Results and Discussion

We investigate the effectiveness of transferring concept normalization from the
general biomedical domain to the clinical trial domain. We trained DILBERT
and BioSyn models on the CDR Disease and CDR Chemical train sets, respec-
tively, for linking clinical conditions and interventions.

Table 4 presents the performance of the DILBERT models compared to
BioSyn and BioBERT ranking on the datasets of clinical trials. We test the
DILBERT model’s transferability on two sets of interventions and conditions
where each mention is associated with one concept only (see ‘single concept’
columns). We evaluate the model on test sets with all mentions, including single
concepts, composite mentions, and out-of-KB cases (see ‘full set’ columns). In
Table 5, we present in-domain results of models evaluated on the CDR data.
In all our experiments when comparing DILBERT and BioSyn models, we use
paired McNemar’s test [30] with a confidence level at 0.05 to measure statistical
significance.

Several observations can be made based on Tables 4 and 5. First, DILBERT
outperformed BioSyn and BioBERT ranking on three sets staying on par with
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BioSyn on the CDR Chemical test set. Adding randomly sampled positive exam-
ples from parent-child relationships gives a statistically significant improvement
in 1-2% on the CT Condition set while staying on par with random sampling on
interventions. To our surprise, hard negative mining produces performance gains
on one of four sets only, which includes chemicals. Second, we compare results
on refined test sets with results on the CDR corpus’s official test set. We observe
the significant decrease of Acc@1 from 93.6% to 75.8% and from 95.8% to 83.8%
for DILBERT on disease and chemical mentions, respectively. Third, DILBERT
models obtained higher results on test sets with single concepts. Models achieve
much higher performance for the normalization of interventions rather than con-
ditions. The DILBERT model achieves a statistically significant improvement
compared to the BioSyn model on the interventions dataset. The error analysis
on the CDR Disease set showed that models with random negative sampling
incorrectly maps 39 out of 147 mentions to the correct concept’s parent. We ob-
serve that some mentions are mapped to the gold concept’ child for the models
trained by re-sampling+siblings sampling.

Inference Time Efficiency and Deployment Our model uses the FAISS
library [21] with GPU support for fast nearest neighbor search by comparing
vectors with Euclidean distance. Embeddings of all terminologies’ concepts are
indexed. We profiled retrieval speed on a server with Intel Xeon CPU E5-2660
2.00GHz and 256GB memory. First, we precomputed all embeddings for all con-
cepts (500 thousand). On a single Nvidia TITAN X GPU, it takes about 7
minutes to compute all embeddings. Given that all embeddings are indexed on
Nvidia TITAN X GPU using IndexFlatL2 index type. To obtain top candidates
for 10 million queries, it requires approximately 3 hours.

6 Conclusion

We studied the task of drug and disease normalization for clinical trials, us-
ing a newly created dataset of 500 interventional studies with 1075 intervention
mentions and 819 condition mentions. We designed a triplet-based metric learn-
ing model named DILBERT that optimizes to pull pairs of mention and concept
BioBERT representations closer than negative samples. We investigated strate-
gies to obtain random and hard positive and negative examples using parent-
child (i.e., broader-narrower) relationships between biomedical concepts. We per-
formed experiments on in-KB and out-of-KB (nil) linking of mentions from the
scientific domain to the clinical domain in a zero-shot setting. DILBERT shows
better transfer capabilities for disease- and drug-related mentions compared to
other state-of-the-art models. In future work, we plan to investigate taxonomy
induction evaluation metrics and the normalization of protein/gene mentions.
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