Skip to main content

Pattern-Aware and Noise-Resilient Embedding Models

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

Abstract

Knowledge Graph Embeddings (KGE) have become an important area of Information Retrieval (IR), in particular as they provide one of the state-of-the-art methods for Link Prediction. Recent work in the area of KGEs has shown the importance of relational patterns, i.e., logical formulas, to improve the learning process of KGE models significantly. In separate work, the role of noise in many knowledge discovery and IR settings has been studied, including the KGE setting. So far, very few papers have investigated the KGE setting considering both relational patterns and noise. Not considering both together can lead to problems in the performance of KGE models. We investigate the effect of noise in the presence of patterns. We show that by introducing a new loss function that is both pattern-aware and noise-resilient, significant performance issues can be solved. The proposed loss function is model-independent which could be applied in combination with different models. We provide an experimental evaluation both on synthetic and real-world cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  2. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  3. Du, J., Qi, K., Shen, Y.: Knowledge graph embedding with logical consistency. In: Sun, M., Liu, T., Wang, X., Liu, Z., Liu, Y. (eds.) CCL/NLP-NABD -2018. LNCS (LNAI), vol. 11221, pp. 123–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01716-3_11

    Chapter  Google Scholar 

  4. Du, J., Qi, K., Wan, H., Peng, B., Lu, S., Shen, Y.: Enhancing knowledge graph embedding from a logical perspective. In: Wang, Z., Turhan, A.-Y., Wang, K., Zhang, X. (eds.) JIST 2017. LNCS, vol. 10675, pp. 232–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70682-5_15

    Chapter  Google Scholar 

  5. Ebisu, T., Ichise, R.: Toruse: knowledge graph embedding on a lie group. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  6. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: Amie: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd international conference on World Wide Web, pp. 413–422 (2013)

    Google Scholar 

  7. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 192–202 (2016)

    Google Scholar 

  8. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  9. Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? an analysis of the compatibility between vector space representations and rules. In: Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (2018)

    Google Scholar 

  10. Heindorf, S., Potthast, M., Stein, B., Engels, G.: Vandalism detection in wikidata. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 327–336 (2016)

    Google Scholar 

  11. Kertkeidkachorn, N., Liu, X., Ichise, R.: GTransE: generalizing translation-based model on uncertain knowledge graph embedding. In: Ohsawa, Y., Yada, K., Ito, T., Takama, Y., Sato-Shimokawara, E., Abe, A., Mori, J., Matsumura, N. (eds.) JSAI 2019. AISC, vol. 1128, pp. 170–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39878-1_16

    Chapter  Google Scholar 

  12. Luo, S., Fang, W.: Potential probability of negative triples in knowledge graph embedding. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 48–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3_5

    Chapter  Google Scholar 

  13. Minervini, P., Costabello, L., Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Regularizing knowledge graph embeddings via equivalence and inversion axioms. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 668–683. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_40

    Chapter  Google Scholar 

  14. Nayyeri, M., Vahdati, S., Zhou, X., Shariat Yazdi, H., Lehmann, J.: Embedding-based recommendations on scholarly knowledge graphs. In: Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A.L., Haase, P., Cochez, M. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 255–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_15

    Chapter  Google Scholar 

  15. Nayyeri, M., Zhou, X., Vahdati, S., Izanloo, R., Yazdi, H.S., Lehmann, J.: Let the margin slide\(\pm \)for knowledge graph embeddings via a correntropy objective function. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2020)

    Google Scholar 

  16. Pujara, J., Augustine, E., Getoor, L.: Sparsity and noise: where knowledge graph embeddings fall short. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1751–1756 (2017)

    Google Scholar 

  17. Qiu, Z., Hu, W., Wu, J., Tang, Z., Jia, X.: Noise-resilient similarity preserving network embedding for social networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3282–3288. AAAI Press (2019)

    Google Scholar 

  18. Du, J.: Ranking diagnoses for inconsistent knowledge graphs by representation learning. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds.) JIST 2018. LNCS, vol. 11341, pp. 52–67. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04284-4_4

    Chapter  Google Scholar 

  19. Ruffinelli, D., Broscheit, S., Gemulla, R.: You \(\{\)can\(\}\) teach an old dog new tricks! on training knowledge graph embeddings. In: International Conference on Learning Representations (2020)

    Google Scholar 

  20. Shan, Y., Bu, C., Liu, X., Ji, S., Li, L.: Confidence-aware negative sampling method for noisy knowledge graph embedding. In: 2018 IEEE International Conference on Big Knowledge (ICBK), pp. 33–40. IEEE (2018)

    Google Scholar 

  21. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  22. Tay, Y., Luu, A.T., Hui, S.C.: Non-parametric estimation of multiple embeddings for link prediction on dynamic knowledge graphs. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  23. Wang, L., et al.: Learning robust representations with graph denoising policy network. arXiv preprint arXiv:1910.01784 (2019)

  24. Xie, R., Liu, Z., Lin, F., Lin, L.: Does william shakespeare really write hamlet? knowledge representation learning with confidence. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  25. Zhao, Y., Liu, J.: Scef: a support-confidence-aware embedding framework for knowledge graph refinement. arXiv preprint arXiv:1902.06377 (2019)

  26. Zhou, X., Zhu, Q., Liu, P., Guo, L.: Learning knowledge embeddings by combining limit-based scoring loss. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1009–1018. ACM (2017)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the EU projects TAILOR (GA 952215), Cleopatra (GA 812997), the BmBF project MLwin, ScaDS.AI (01/S18026A-F), WWTF (Vienna Science and Technology Fund) grant VRG18-013, the EPSRC grant EP/M025268/1, and the EU Horizon 2020 grant 809965.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Nayyeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nayyeri, M., Vahdati, S., Sallinger, E., Alam, M.M., Yazdi, H.S., Lehmann, J. (2021). Pattern-Aware and Noise-Resilient Embedding Models. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics