Skip to main content

Weakly-Supervised Open-Retrieval Conversational Question Answering

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

  • 2509 Accesses

Abstract

Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that each question is answerable by a single span of text within a particular passage (a span answer). The supervision signal is thus derived from whether or not the system can recover an exact match of this ground-truth answer span from the retrieved passages. This method is referred to as span-match weak supervision. However, information-seeking conversations are challenging for this span-match method since long answers, especially freeform answers, are not necessarily strict spans of any passage. Therefore, we introduce a learned weak supervision approach that can identify a paraphrased span of the known answer in a passage. Our experiments on QuAC and CoQA datasets show that the span-match weak supervisor can only handle conversations with span answers, and has less satisfactory results for freeform answers generated by people. Our method is more flexible as it can handle both span answers and freeform answers. Moreover, our method can be more powerful when combined with the span-match method which shows it is complementary to the span-match method. We also conduct in-depth analyses to show more insights on open-retrieval ConvQA under a weak supervision setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/prdwb/ws-orconvqa.

  2. 2.

    We disable the reranker in Qu et al. [30] since our preliminary experiments indicated the weak supervision signals seem to lead to degradation for reranker and retriever.

  3. 3.

    https://github.com/facebookresearch/faiss.

  4. 4.

    This difference in the data accounts for the discrepancies of the full-supervision results presented in Table 2.

  5. 5.

    https://github.com/prdwb/orconvqa-release.

  6. 6.

    https://github.com/martiansideofthemoon/style-transfer-paraphrase.

  7. 7.

    https://github.com/huggingface/transformers.

References

  1. Ahmad, A., Constant, N., Yang, Y., Cer, D.M.: ReQA: An Evaluation for End-to-End Answer Retrieval Models. ArXiv (2019)

    Google Scholar 

  2. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-domain uestions. In: ACL (2017)

    Google Scholar 

  3. Chen, L., Tang, Z., Yang, G.: Balancing reinforcement learning training experiences in interactive information retrieval. In: SIGIR (2020)

    Google Scholar 

  4. Chen, Y., Wu, L., Zaki, M.J.: GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension. ArXiv (2019)

    Google Scholar 

  5. Choi, E., et al.: QuAC: question answering in context. In: EMNLP (2018)

    Google Scholar 

  6. Clark, C., Gardner, M.: Simple and effective multi-paragraph reading comprehension. In: ACL (2017)

    Google Scholar 

  7. Cohen, D., Yang, L., Croft, W.B.: WikiPassageQA: a benchmark collection for research on non-factoid answer passage retrieval. In: SIGIR (2018)

    Google Scholar 

  8. Das, R., Dhuliawala, S., Zaheer, M., McCallum, A.: Multi-step retriever-reader interaction for scalable open-domain question answering. In: ICLR (2019)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  10. Dhingra, B., Mazaitis, K., Cohen, W.W.: Quasar: Datasets for Question Answering by Search and Reading. ArXiv (2017)

    Google Scholar 

  11. Dunn, M., Sagun, L., Higgins, M., Güney, V.U., Cirik, V., Cho, K.: SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine. ArXiv (2017)

    Google Scholar 

  12. Elgohary, A., Peskov, D., Boyd-Graber, J.L.: Can You Unpack That?. EMNLP/IJCNLP, Learning to Rewrite Questions-in-Context. In (2019)

    Google Scholar 

  13. Garg, S., Vu, T., Moschitti, A.: TANDA: transfer and adapt pre-trained transformer models for answer sentence selection. In: AAAI (2020)

    Google Scholar 

  14. Htut, P.M., Bowman, S.R., Cho, K.: Training a ranking function for open-domain question answering. In: NAACL-HLT (2018)

    Google Scholar 

  15. Huang, H.Y., Choi, E., tau Yih, W.: Flowqa: grasping flow in history for conversational machine comprehension. ArXiv (2018)

    Google Scholar 

  16. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In: ACL (2017)

    Google Scholar 

  17. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: EMNLP (2020)

    Google Scholar 

  18. Kratzwald, B., Feuerriegel, S.: Adaptive document retrieval for deep question answering. In: EMNLP (2018)

    Google Scholar 

  19. Krishna, K., Wieting, J., Iyyer, M.: Reformulating unsupervised style transfer as paraphrase generation. In: EMNLP (2020)

    Google Scholar 

  20. Kwiatkowski, T., et al.: Natural questions: a benchmark for question answering research. TACL 7, 453–466 (2019)

    Article  Google Scholar 

  21. Lan, Z.Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. ArXiv (2019)

    Google Scholar 

  22. Lee, J., Yun, S., Kim, H., Ko, M., Kang, J.: Ranking paragraphs for improving answer recall in open-domain question answering. In: EMNLP (2018)

    Google Scholar 

  23. Lee, K., Chang, M.W., Toutanova, K.: Latent retrieval for weakly supervised open domain question answering. In: ACL (2019)

    Google Scholar 

  24. Li, J., Qiu, L., Tang, B., Chen, D., Zhao, D., Yan, R.: Insufficient Data Can Also Rock!. AAAI, Learning to Converse Using Smaller Data with Augmentation. In (2019)

    Google Scholar 

  25. Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large dataset for research in unstructured multi-turn dialogue systems. In: SIGDIAL (2015)

    Google Scholar 

  26. Luo, J., Dong, X., Yang, G.: Learning to reinforce search effectiveness. In: ICTIR (2015)

    Google Scholar 

  27. Luo, J., Zhang, S., Yang, G.: Win-win search: dual-agent stochastic game in session search. In: SIGIR (2014)

    Google Scholar 

  28. Nguyen, T., et al.: MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. ArXiv (2016)

    Google Scholar 

  29. Qiu, M., et al.: Reinforced history backtracking for conversational question answering. In: AAAI (2021)

    Google Scholar 

  30. Qu, C., Yang, L., Chen, C., Qiu, M., Croft, W.B., Iyyer, M.: Open-retrieval conversational question answering. In: SIGIR (2020)

    Google Scholar 

  31. Qu, C., et al.: Attentive history selection for conversational question answering. In: CIKM (2019)

    Google Scholar 

  32. Qu, C., Yang, L., Qiu, M., Croft, W.B., Zhang, Y., Iyyer, M.: BERT with history answer embedding for conversational question answering. In: SIGIR (2019)

    Google Scholar 

  33. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google Scholar 

  34. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for SQuAD. In: ACL (2018)

    Google Scholar 

  35. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100, 000+ questions for machine comprehension of text. In: EMNLP (2016)

    Google Scholar 

  36. Reddy, S., Chen, D., Manning, C.D.: CoQA: a conversational question answering challenge. TACL 7, 249–266 (2018)

    Article  Google Scholar 

  37. Shrivastava, A., Li, P.: Asymmetric LSH (ALSH) for sublinear time maximum inner product search (MIPS). In: NIPS (2014)

    Google Scholar 

  38. Tao, C., Wu, W., Xu, C., Hu, W., Zhao, D., Yan, R.: Multi-representation fusion network for multi-turn response selection in retrieval-based chatbots. In: WSDM (2019)

    Google Scholar 

  39. Trischler, A., et al.: NewsQA: a machine comprehension dataset. In: Rep4NLP@ACL (2016)

    Google Scholar 

  40. Turc, I., Chang, M.W., Lee, K., Toutanova, K.: Well-Read Students Learn Better: On the Importance of Pre-training Compact Models. ArXiv (2019)

    Google Scholar 

  41. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  42. Voorhees, E.M., Tice, D.M.: The TREC-8 question answering track evaluation. In: TREC (1999)

    Google Scholar 

  43. Wang, M., Smith, N.A., Mitamura, T.: What is the Jeopardy Model?. EMNLP-CoNLL, A Quasi-Synchronous Grammar for QA. In (2007)

    Google Scholar 

  44. Wang, S., et al.: R3: Reinforced ranker-reader for open-domain question answering. In: AAAI (2018)

    Google Scholar 

  45. Wieting, J., Gimpel, K.: ParaNMT-50M: pushing the limits of paraphrastic sentence embeddings with millions of machine translations. In: ACL (2018)

    Google Scholar 

  46. Wolf, T., Sanh, V., Chaumond, J., Delangue, C.: Transfertransfo: a transfer learning approach for neural network based conversational agents. In: NeurIPS CAI Workshop (2018)

    Google Scholar 

  47. Wu, Y., Wu, W.Y., Zhou, M., Li, Z.: Sequential match network: a new architecture for multi-turn response selection in retrieval-based chatbots. In: ACL (2016)

    Google Scholar 

  48. Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural networks for retrieval-based human-computer conversation system. In: SIGIR (2016)

    Google Scholar 

  49. Yan, R., Song, Y., Zhou, X., Wu, H.: “Shall i be your chat companion?": towards an online human-computer conversation system. In: CIKM (2016)

    Google Scholar 

  50. Yang, L., et al.: Response ranking with deep matching networks and external knowledge in information-seeking conversation systems. In: SIGIR (2018)

    Google Scholar 

  51. Yang, L., et al.: A hybrid retrieval-generation neural conversation model. In: CIKM (2019)

    Google Scholar 

  52. Yang, L., et al.: IART: intent-aware response ranking with transformers in information-seeking conversation systems. In: WWW (2020)

    Google Scholar 

  53. Yang, W., et al.: End-to-end open-domain question answering with BERTserini. In: NAACL-HLT (2019)

    Google Scholar 

  54. Yang, Y., Yih, W.T., Meek, C.: WikiQA: a challenge dataset for open-domain question answering. In: EMNLP (2015)

    Google Scholar 

  55. Yeh, Y.T., Chen, Y.N.: FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension. ArXiv (2019)

    Google Scholar 

  56. Zhou, J., Agichtein, E.: RLIRank: learning to rank with reinforcement learning for dynamic search. In: WWW (2020)

    Google Scholar 

  57. Zhu, C., Zeng, M., Huang, X.: SDNet: Contextualized Attention-based Deep Network for Conversational Question Answering. ArXiv (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Center for Intelligent Information Retrieval and in part by NSF IIS-1715095. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor. The authors would like to thank Minghui Qiu for his constructive comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, C., Yang, L., Chen, C., Croft, W.B., Krishna, K., Iyyer, M. (2021). Weakly-Supervised Open-Retrieval Conversational Question Answering. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics