Skip to main content

Instantaneous Frequency of the EEG as a Stress Measure - A Preliminary Research

  • Conference paper
  • First Online:
Control, Computer Engineering and Neuroscience (ICBCI 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1362))

  • 1131 Accesses

Abstract

Stress is one of the most common factors of everyday life. There is a plethora of different measures used to determine the physiological responses to stress. One of the most commonly used is the electroencephalogram (EEG). Power of various frequency bands in the EEG is often correlated with mental states of the measured subject. Particularly, decrease in the alpha band and increase in the beta range is related to the stressed, active state. In this research, a methodology to compare this common measures to the approach based on the instantaneous frequency’s slope (ifs) was proposed.

Generally, proposed methodology is as follows. Subject, while listening to quiet rain noise, is focused on solving very easy math problems (incrementing or decrementing one-digit numbers). Suddenly, loud one-second white noise is played in the earphones of a subject. This is treated as a stressor. For the time of the study, a 14-channel EEG monitor is measuring activity of the brain.

Obtained preliminary results, based on five participants, indicated that the ifs can be more statistically significant than common approaches in measuring the dynamics of the stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhang, P.A., Gawali, B.W., Mehrotra, S.C.: Technological basics of EEG recording and operation of apparatus. In: Introduction to EEG- and Speech-Based Emotion Recognition, pp. 19–50. Elsevier/AP, Academic Press is an imprint of Elsevier. https://doi.org/10.1016/B978-0-12-804490-2.00002-6

  2. Al-Shargie, F.M., Tang, T.B., Badruddin, N., Kiguchi, M.: Mental stress quantification using EEG signals. In: Ibrahim, F., Usman, J., Mohktar, M.S., Ahmad, M.Y. (eds.) International Conference for Innovation in Biomedical Engineering and Life Sciences, IFMBE Proceedings, vol. 56, pp. 15–19. Springer, Singapore. https://doi.org/10.1007/978-981-10-0266-3_4

  3. Al-Shargie, F.: Multilevel Assessment of Mental Stress Using SVM with ECOC: An EEG Approach. https://doi.org/10.31224/osf.io/7v9ks

  4. Al-Shargie, F., Kiguchi, M., Badruddin, N., Dass, S.C., Hani, A.F.M., Tang, T.B.: Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express 7(10), 3882–3898 (2016). https://doi.org/10.1364/BOE.7.003882

    Article  Google Scholar 

  5. Al-Shargie, F., Tang, T.B., Badruddin, N., Kiguchi, M.: Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach. Med. Biol. Eng. Comput. 56(1), 125–136 (2018). https://doi.org/10.1007/s11517-017-1733-8

    Article  Google Scholar 

  6. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A.: The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 16 (2015). https://doi.org/10.3389/fninf.2015.00016

    Article  Google Scholar 

  7. Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 80(4), 520–538 (1992). https://doi.org/10.1109/5.135376

    Article  Google Scholar 

  8. Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992). https://doi.org/10.1109/5.135378

    Article  Google Scholar 

  9. Borkowski, J., Kania, D., Mroczka, J.: Comparison of sine-wave frequency estimation methods in respect of speed and accuracy for a few observed cycles distorted by noise and harmonics. Metrol. Measur. Syst. 25, 283–302 (2018). https://doi.org/10.24425/119567

    Article  Google Scholar 

  10. Borkowski, J., Kania, D.: Interpolated-DFT-based fast and accurate amplitude and phase estimation for the control of power. http://arxiv.org/abs/1601.00453

  11. Chatrian, G.E., Lettich, E., Nelson, P.L.: Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am. J. EEG Technol. 25(2), 83–92 (1985). https://doi.org/10.1080/00029238.1985.11080163

    Article  Google Scholar 

  12. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004). https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  Google Scholar 

  13. Gärtner, M., Grimm, S., Bajbouj, M.: Frontal midline theta oscillations during mental arithmetic: effects of stress. Front. Behav. Neurosci. 9, 96 (2015). https://doi.org/10.3389/fnbeh.2015.00096

    Article  Google Scholar 

  14. Hammen, C., Kim, E.Y., Eberhart, N.K., Brennan, P.A.: Chronic and acute stress and the prediction of major depression in women. Depress. Anxiety 26(8), 718–723 (2009). https://doi.org/10.1002/da.20571

    Article  Google Scholar 

  15. Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., Marosi, E., Rodríguez, M., Rodríguez, M.: EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int. J. Psychophysiol. 24(1–2), 161–171 (1996). https://doi.org/10.1016/S0167-8760(96)00053-0

    Article  Google Scholar 

  16. Herman, J.P., Cullinan, W.E.: Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20(2), 78–84 (1997). https://doi.org/10.1016/S0166-2236(96)10069-2

    Article  Google Scholar 

  17. Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951). https://doi.org/10.1080/01621459.1951.10500769

    Article  MATH  Google Scholar 

  18. Jun, G., Smitha, K.G.: EEG based stress level identification. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 003270–003274. IEEE. https://doi.org/10.1109/SMC.2016.7844738

  19. Kania, D., Borkowski, J.: Estimation methods of multifrequency signals with noise and harmonics for PV systems with a DSP processor. In: 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pp. 524–527. IEEE. https://doi.org/10.1109/TSP.2017.8076042

  20. Le Fevre, M., Matheny, J., Kolt, G.S.: Eustress, distress, and interpretation in occupational stress. J. Manag. Psychol. 18(7), 726–744 (2003). https://doi.org/10.1108/02683940310502412

    Article  Google Scholar 

  21. Lewis, R.S., Weekes, N.Y., Wang, T.H.: The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biol. Psychol. 75(3), 239–247 (2007). https://doi.org/10.1016/j.biopsycho.2007.03.004

    Article  Google Scholar 

  22. Niedermeyer, E., Schomer, D.L., da Silva, F.H.L. (eds.): Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th edn. Wolters Kluwer, Lippincott Williams & Wilkins (2011)

    Google Scholar 

  23. Norhazman, H., Zaini, N.M., Taib, M.N., Omar, H.A., Jailani, R., Lias, S., Mazalan, L., Sani, M.M.: Behaviour of EEG Alpha Asymmetry when stress is induced and binaural beat is applied. In: 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 297–301. IEEE (2012). https://doi.org/10.1109/ISCAIE.2012.6482116

  24. Paszkiel, S., Dobrakowski, P., Łysiak, A.: The impact of different sounds on stress level in the context of EEG, cardiac measures and subjective stress level: a pilot study. Brain Sci. 10(10), 728 (2020). https://doi.org/10.3390/brainsci10100728

    Article  Google Scholar 

  25. Rousselet, G.A.: Does filtering preclude us from studying ERP time-courses? Front. Psychol. 3, 131 (2012). https://doi.org/10.3389/fpsyg.2012.00131

    Article  Google Scholar 

  26. Ryu, K., Myung, R.: Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int. J. Ind. Ergon. 35(11), 991–1009 (2005). https://doi.org/10.1016/j.ergon.2005.04.005

    Article  Google Scholar 

  27. Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G., Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf Technol. Biomed. 14(2), 410–417 (2010). https://doi.org/10.1109/TITB.2009.2036164

    Article  Google Scholar 

  28. Shevchuk, N.A.: Adapted cold shower as a potential treatment for depression. Med. Hypotheses 70(5), 995–1001 (2008). https://doi.org/10.1016/j.mehy.2007.04.052

    Article  Google Scholar 

  29. Söderlund, G., Sikström, S., Smart, A.: Listen to the noise: noise is beneficial for cognitive performance in ADHD. J. Child Psychol. Psychiatry 48(8), 840–847 (2007). https://doi.org/10.1111/j.1469-7610.2007.01749.x

    Article  Google Scholar 

  30. Taran, S., Bajaj, V.: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method. Comput. Methods Prog. Biomed. 173, 157–165 (2019). https://doi.org/10.1016/j.cmpb.2019.03.015

    Article  Google Scholar 

  31. Vyas, A., Chattarji, S.: Modulation of different states of anxiety-like behavior by chronic stress. Behav. Neurosci. 118(6), 1450–1454 (2004). https://doi.org/10.1037/0735-7044.118.6.1450

    Article  Google Scholar 

  32. Čić, M., Šoda, J., Bonković, M.: Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal. Comput. Biol. Med. 43(12), 2110–2117 (2013). https://doi.org/10.1016/j.compbiomed.2013.10.002

    Article  Google Scholar 

Download references

Acknowledgments

Author would like to express gratitude for all the participants which took part in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Łysiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łysiak, A. (2021). Instantaneous Frequency of the EEG as a Stress Measure - A Preliminary Research. In: Paszkiel, S. (eds) Control, Computer Engineering and Neuroscience. ICBCI 2021. Advances in Intelligent Systems and Computing, vol 1362. Springer, Cham. https://doi.org/10.1007/978-3-030-72254-8_11

Download citation

Publish with us

Policies and ethics