Skip to main content

Non-invasive Optical Methods in Quantitative Minimal Erythema Dose Assessment in Vivo: Comparison of Preclinical and Clinical Data

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2020)

Abstract

Even in modern dermatology clinics, the determination of the severity of ultraviolet (UV)-induced erythema and assessment of individual photosensitivity based on the calculation of minimal erythema dose (MED) is still performed visually, which is subjective, and associated with high variability of the results and frequent errors when it done be untrained personnel. The application of non-invasive quantitaitve methods such as laser fluorescence spectroscopy (LFS) and optical tissue oximetry (OTO) could be a solution of these problems. In is well known that acute UV skin damage is associated with structural alterations, vasodilatation and inflammatory response. Moreover, porphyrins which have well-known autofluorescent properties play a role in the chemoattraction of immune cells to the area of local inflammation caused by UV. Using LFS in the preclinical part of the study on ICR mice (N = 25) time-dependent dynamic changes in the fluorescence parameters of porphyrins were found. Optical parameters were in a good agreement with histological findings. Statistically significant correlation was found between the severity of inflammatory infiltrate and the tissue content index (η) of porphyrins. During the clinical part of the study on healthy volunteers (n = 14) the analysis of endogenous fluorescence and microcirculation characteristics by LFS and OTO revealed the correlation relationship between the intensity of endogenous fluorescence of porphyrins and oxygen consumption with a dose of UV radiation. The correlation of the porphyrins fluorescence with a dose of UV was also demonstrated. Overall results have fundamental value and should be investigated and applied in clinical practice to objectively assess and predict MED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krutmann, J., Hönigsmann, H., Elmets, C.A., Bergstresser, P.R. (eds.): Dermatological phototherapy and photodiagnostic methods. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-36693-5

    Book  Google Scholar 

  2. Heckman, C.J., et al.: Minimal erythema dose (MED) testing. JoVE (J. Visual. Exp.), (75), e50175 (2013)

    Google Scholar 

  3. Hönigsmann, H.: Polymorphous light eruption. Photodermatol. Photoimmunol. Photomed. 24(3), 155–161 (2008)

    Article  Google Scholar 

  4. Makmatov-Rys, M.B., Kulikov, D.A., Kaznacheeva, E.V., Khlebnikova, A.N.: Pathogenic features of acute ultraviolet-induced skin damage. Klinicheskaya dermatologiya i venerologiya 18(4), 412 (2019). https://doi.org/10.17116/klinderma201918041412

    Article  Google Scholar 

  5. Sklar, L.R., Almutawa, F., Lim, H.W., Hamzavi, I.: Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol. Sci. 12, 54–64 (2013)

    Article  Google Scholar 

  6. Lock-Andersen, J., Wulf, H.C.: Threshold level for measurement of UV sensitivity: reproducibility of phototest. Photodermatol. Photoimmunol. Photomed. 12(4), 154–161 (1996)

    Article  Google Scholar 

  7. Falk, M., Ilias, M., Anderson, C.: Inter-observer variability in reading of phototest reactions with sharply or diffusely delineated borders. Skin Res. Technol. 14(4), 397–402 (2008)

    Article  Google Scholar 

  8. Clydesdale, G.J., Dandie, G.W., Muller, H.K.: Ultraviolet light induced injury: immunological and inflammatory effects. Immunol. Cell Biol. 79(6), 547–568 (2001)

    Article  Google Scholar 

  9. Papazoglou, E., Sunkari, C., Neidrauer, M., Klement, J.F., Uitto, J.: Noninvasive assessment of UV-induced skin damage: comparison of optical measurements to histology and MMP expression. Photochem. Photobiol. 86(1), 138–145 (2010)

    Article  Google Scholar 

  10. Jeon, S.Y., Lee, C.Y., Song, K.H., Kim, K.H.: Spectrophotometric measurement of minimal erythema dose sites after narrowband ultraviolet B phototesting: clinical implication of spetrophotometric values in phototherapy. Ann. Dermatol. 26(1), 17–25 (2014)

    Article  Google Scholar 

  11. Bodekær, M., Philipsen, P.A., Karlsmark, T., Wulf, H.C.: Good agreement between minimal erythema dose test reactions and objective measurements: an in vivo study of human skin. Photodermatol. Photoimmunol. Photomed. 29(4), 190–195 (2013)

    Article  Google Scholar 

  12. Wilhelm, K.P., Kaspar, K., Funkel, O.: Comparison of three techniques for evaluating skin erythemal response for determination of sun protection factors of sunscreens: high resolution laser Doppler imaging, colorimetry and visual scoring. Photodermatol. Photoimmunol. Photomed. 17(2), 60–65 (2001)

    Article  Google Scholar 

  13. Gambichler, T., et al.: Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology. Arch. Dermatol. Res. 297(5), 218–225 (2005). https://doi.org/10.1007/s00403-005-0604-6

    Article  Google Scholar 

  14. Yamashita, T., Akita, H., Astner, S., Miyakawa, M., Lerner, E.A., González, S.: In vivo assessment of pigmentary and vascular compartments changes in UVA exposed skin by reflectance-mode confocal microscopy. Exp. Dermatol. 16(11), 905–911 (2007)

    Article  Google Scholar 

  15. Franco, W., Gutierrez-Herrera, E., Kollias, N., Doukas, A.: Review of applications of fluorescence excitation to spectroscopy dermatology. Br. J. Dermatol. 174(3), 499–504 (2016)

    Article  Google Scholar 

  16. Petritskaya, E.N., Kulikov, D.A., Rogatkin, D.A., Guseva, I.A., Kulikova, P.A.: Use of fluorescence spectroscopy for diagnosis of hypoxia and inflammatory processes in tissue. J. Opt. Technol. 82(12), 810–814 (2015)

    Article  Google Scholar 

  17. Raznitsyna, I., et al.: Fluorescence of radiation-induced tissue damage. Int. J. Radiat. Biol. 94(2), 166–173 (2018)

    Article  Google Scholar 

  18. Chursinova, Y.V., et al.: Laser fluorescence spectroscopy and optical tissue oximetry in the diagnosis of skin fibrosis. Biomed. Photonics 8(1), 38–45 (2019)

    Article  Google Scholar 

  19. Tian, W.D., Gillies, R., Brancaleon, L., Kollias, N.: Aging and effects of ultraviolet a exposure may be quantified by fluorescence excitation spectroscopy in vivo. J. Invest. Dermatol. 116(6), 840–845 (2001)

    Article  Google Scholar 

  20. Makmatov-Rys, M., et al.: Optical technology for ultraviolet erythema assessment and minimal erythema dose determination in healthy volunteers. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 1 Biodevices: Biodevices, pp. 73–78 (2020)

    Google Scholar 

  21. Gyöngyösi, N., et al.: Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies. Exp. Dermatol. 25(7), 519–525 (2016)

    Article  Google Scholar 

  22. Palmer, R., Garibaldinos, T., Hawk, J.: Phototherapy guidelines. St John’s Institute of Dermatology/St Thomas’ Hospital, London (2005)

    Google Scholar 

  23. Faurschou, A., Wulf, H.C.: European dermatology guideline for the photodermatoses. 2. Phototesting. EDF guidelines for dermatology in Europe. ABW Wissenschaftsverlag, Berlin (2009)

    Google Scholar 

  24. Hruza, L.L., Pentland, A.P.: Mechanisms of UV-induced inflammation. J. Invest. Dermatol. 100(1), 35–41 (1993)

    Article  Google Scholar 

  25. Croce, A.C., Bottiroli, G.: Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur. J. Histochem. 58(4), 2461, 320–337 (2014)

    Google Scholar 

  26. Schneckenburger, H., Lang, M., Köllner, T., Rück, A., Herzog, M., Hörauf, H.: Fluorescence spectra and microscopic imaging of porphyrins in single cells and tissues. Lasers Med. Sci. 4, 159–166 (1989). https://doi.org/10.1007/BF02032430

    Article  Google Scholar 

  27. Rogatkin, D., Shumskiy, V., Tereshenko, S., Polyakov, P.: Laser-based non-invasive spectrophotometry–An overview of possible medical applications. Photonics Lasers Med. 2(3), 225–240 (2013)

    Article  Google Scholar 

  28. Porto, B.N., et al.: Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J. Biol. Chem. 282, 24430–24436 (2007)

    Article  Google Scholar 

  29. Logan, G., Wilhelm, D.L.: Vascular permeability changes in inflammation. I. The role of endogenous permeability factors in ultraviolet injury. British journal of experimental pathology, 47(3), 300 (1966).

    Google Scholar 

  30. Borelli, C., et al.: In vivo porphyrin production by P. acnes in untreated acne patients and its modulation by acnetreatment. Acta Derm. Venereol. 86(4), 316–319 (2006)

    Article  Google Scholar 

  31. Brunk, U.T., Terman, A.: Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radical Biol. Med. 33(5), 611–619 (2002)

    Article  Google Scholar 

  32. Lu, H., Edwards, C., Gaskell, S., Pearse, A., Marks, R.: Melanin content and distribution in the surface corneocyte with skin phototypes. Br. J. Dermatol. 135(2), 263–267 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makmatov-Rys, M. et al. (2021). Non-invasive Optical Methods in Quantitative Minimal Erythema Dose Assessment in Vivo: Comparison of Preclinical and Clinical Data. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics