Skip to main content

Throughput Prediction on 60 GHz Mobile Devices for High-Bandwidth, Latency-Sensitive Applications

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12671))

Included in the following conference series:

Abstract

In the near future, high quality VR and video streaming at 4K/8K resolutions will require Gigabit throughput to maintain a high user quality of experience (QoE). IEEE 802.11ad, which standardizes the 14 GHz of unlicensed spectrum around 60 GHz, is a prime candidate to fulfil these demands wirelessly. To maintain QoE, applications need to adapt to the ever changing network conditions by performing quality adaptation. A key component of quality adaptation is throughput prediction. At 60 GHz, due to the much higher frequency, the throughput can vary sharply due to blockage and mobility. Hence, the problem of predicting throughput becomes quite challenging.

In this paper, we perform an extensive measurement study of the predictability of the network throughput of an 802.11ad WLAN in downloading data to an 802.11ad-enabled mobile device under varying mobility patterns and orientations of the mobile device. We show that, with carefully designed neural networks, we can predict the throughput of the 60 GHz link with good accuracy at varying timescales, from 10 ms (suitable for VR) up to 2 s (suitable for ABR streaming). We further identify the most important features that affect the neural network prediction accuracy to be past throughput and MCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GHz Throughput Prediction Dataset. https://github.com/NUWiNS/pam2021-60ghz-throughput-prediction-data

  2. Xiph.org Video Test Media [derf’s collection]. https://media.xiph.org/video/derf/

  3. Adobe HTTP Dynamic Streaming. https://www.adobe.com/products/hds-dynamic-streaming.html

  4. Android Sensors Overview. https://developer.android.com/guide/topics/sensors/sensors_overview

  5. ASUS Republic of Gamers (ROG) Phone. https://www.asus.com/us/Phone/ROG-Phone/

  6. ASUS Republic of Gamers (ROG) Phone II. https://www.asus.com/us/Phone/ROG-Phone-II/

  7. Cinetics Lynx 3 Axis Slider. https://cinetics.com/lynx-3-axis-slider/

  8. Dragonframe Stop Motion Software. https://www.dragonframe.com

  9. Google Cardboard. https://arvr.google.com/cardboard/

  10. JPMML-Evaluator - Java Evaluator API for Predictive Model Markup Language (PMML). https://github.com/jpmml/jpmml-evaluator

  11. Microsoft Smooth Streaming. https://www.microsoft.com/silverlight/smoothstreaming/

  12. Netgear Nighthawk® X10. https://www.netgear.com/landings/ad7200

  13. nuttcp - Network Performance Measurement Tool. https://www.nuttcp.net

  14. Tensorflow for android. https://www.tensorflow.org/lite/guide/android

  15. Akhtar, Z., et al.: Oboe: auto-tuning video abr algorithms to network conditions. In: Proceedings of ACM SIGCOMM (2018)

    Google Scholar 

  16. Baig, G., et al.: Jigsaw: robust live 4K video streaming. In: Proceedings of ACM MobiCom (2019)

    Google Scholar 

  17. Bui, N., Michelinakis, F., Widmer, J.: A model for throughput prediction for mobile users. In: Proceedings of IEEE EWC (2014)

    Google Scholar 

  18. He, J., Qureshi, M., Qiu, L., Li, J., Li, F., Han, L.: Rubiks: practical 360-degree streaming for smartphones. In: Proceedings of ACM MobiSys (2018)

    Google Scholar 

  19. Huang, T.Y., Johari, R., McKeown, N., Trunnell, M., Watson, M.: A buffer-based approach to rate adaptation: evidence from a large video streaming service. In: Proceedings of ACM SIGCOMM (2014)

    Google Scholar 

  20. IEEE 802.11 Working Group: IEEE 802.11ad, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band (2012)

    Google Scholar 

  21. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In: Proceedings of ACM CoNEXT (2012)

    Google Scholar 

  22. Kajita, S., Yamaguchi, H., Higashino, T., Urayama, H., Yamada, M., Takai, M.: Throughput and delay estimator for 2.4GHz WiFi APs: a machine learning-based approach. In: Proceedings of IFIP WMNC (2015)

    Google Scholar 

  23. Khan, M.O., Qiu, L.: Accurate WiFi packet delivery rate estimation and applications. In: Proceedings of IEEE INFOCOM (2016)

    Google Scholar 

  24. Lai, Z., Hu, Y.C., Cui, Y., Sun, L., Dai, N.: Furion: engineering high-quality immersive virtual reality on today’s mobile devices. In: Proceedings of ACM MobiCom (2017)

    Google Scholar 

  25. Li, Z., et al.: Probe and adapt: rate adaptation for http video streaming at scale. IEEE J. Sel. Areas Commun. 32(4), 719–733 (2014)

    Google Scholar 

  26. Liu, X., Vlachou, C., Qian, F., Wang, C., Kim, K.H.: Firefly: untethered multi-user VR for commodity mobile devices. In: Proceedings of USENIX ATC (2020)

    Google Scholar 

  27. Liu, Y., Lee, J.Y.B.: An empirical study of throughput prediction in mobile data networks. In: Proceedings of IEEE GLOBECOM (2015)

    Google Scholar 

  28. Mangiante, S., Klas, G., Navon, A., GuanHua, Z., Ran, J., Silva, M.D.: VR is on the edge: how to deliver 360\(^\circ \) videos in mobile networks. In: Proceedings of VR/AR Network (2017)

    Google Scholar 

  29. Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with pensieve. In: Proceedings of ACM SIGCOMM (2017)

    Google Scholar 

  30. Meng, J., Paul, S., Hu, Y.C.: Coterie: exploiting frame similarity to enable high-quality multiplayer VR on commodity mobile devices. In: Proceedings of ACM ASPLOS (2020)

    Google Scholar 

  31. Mok, R.K.P., Luo, X., Chan, E.W.W., Chang, R.K.C.: QDASH: a QoE-aware dash system. In: Proceedings of ACM MMSys (2012)

    Google Scholar 

  32. Narayanan, A., et al.: Lumos5G: mapping and predicting commercial mmwave 5g throughput (2020)

    Google Scholar 

  33. Pantos, R.: Apple HTTP Live Streaming 2nd Edition. Internet-Draft draft-pantos-hls-rfc8216bis-07, Internet Engineering Task Force (2020). https://datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis-07

  34. Qian, F., Han, B., Xiao, Q., Gopalakrishnan, V.: Flare: practical viewport-adaptive 360-degree video streaming for mobile devices. In: Proceedings of ACM MobiCom (2018)

    Google Scholar 

  35. Saha, S.K., et al.: Fast and infuriating: performance and pitfalls of 60 GHz WLANs based on consumer-grade hardware. In: Proceedings of IEEE SECON (2018)

    Google Scholar 

  36. Saha, S.K., Aggarwal, S., Pathak, R., Koutsonikolas, D., Widmer, J.: MuSher: an agile multipath-TCP scheduler for dual-band 802.11ad/ac wireless LANs. In: Proceedings of ACM MobiCom (2019)

    Google Scholar 

  37. Shi, S., Gupta, V., Jana, R.: Freedom: fast recovery enhanced VR delivery over mobile networks. In: Proceedings of ACM MobiSys (2019)

    Google Scholar 

  38. Song, L., Striegel, A.: Leveraging frame aggregation for estimating WiFi available bandwidth. In: Proceedings of IEEE SECON (2017)

    Google Scholar 

  39. Spiteri, K., Urgaonkar, R., Sitaraman, R.K.: BOLA: near-optimal bitrate adaptation for online videos. In: Proceedings of IEEE INFOCOM (2016)

    Google Scholar 

  40. Stockhammer, T.: Dynamic adaptive streaming over HTTP: standards and design principles. In: Proceedings of ACM MMSys (2011)

    Google Scholar 

  41. Sun, Y., et al.: CS2P: improving video bitrate selection and adaptation with data-driven throughput prediction. In: Proceedings of ACM SIGCOMM (2016)

    Google Scholar 

  42. Sur, S., Pefkianakis, I., Zhang, X., Kim, K.H.: WiFi-assisted 60 GHz wireless networks. In: Proceedings of ACM MobiCom (2017)

    Google Scholar 

  43. Sur, S., Venkateswaran, V., Zhang, X., Ramanathan, P.: 60 GHz indoor networking through flexible beams: a link-level profiling. In: Proceedings of ACM SIGMETRICS (2015)

    Google Scholar 

  44. Wei, T., Zhang, X.: Pose information assisted 60 GHz networks: towards seamless coverage and mobility support. In: Proceedings of ACM MobiCom (2017)

    Google Scholar 

  45. Xu, T., Han, B., Qian, F.: Analyzing viewport prediction under different VR interactions. In: Proceedings of ACM CoNEXT (2019)

    Google Scholar 

  46. Yan, F.Y., et al.: Learning in situ: a randomized experiment in video streaming. In: Proceedings of USENIX NSDI (2020)

    Google Scholar 

  47. Yin, X., Jindal, A., Sekara, V., Sinopoli, B.: A control-theoretic approach for dynamic adaptive video streaming over HTTP. In: Proceedings of ACM SIGCOMM (2015)

    Google Scholar 

  48. Zhou, A., Wu, L., Xu, S., Ma, H., Wei, T., Zhang, X.: Following the shadow: agile 3-D beam-steering for 60 GHz wireless networks. In: Proceedings of IEEE INFOCOM (2018)

    Google Scholar 

Download references

Acknowledgements

We thank our shepherd, Prof. Özgü Alay, and the anonymous reviewers for their valuable comments. This work was supported in part by the NSF grant CNS-1553447.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivang Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, S., Kong, Z., Ghoshal, M., Hu, Y.C., Koutsonikolas, D. (2021). Throughput Prediction on 60 GHz Mobile Devices for High-Bandwidth, Latency-Sensitive Applications. In: Hohlfeld, O., Lutu, A., Levin, D. (eds) Passive and Active Measurement. PAM 2021. Lecture Notes in Computer Science(), vol 12671. Springer, Cham. https://doi.org/10.1007/978-3-030-72582-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72582-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72581-5

  • Online ISBN: 978-3-030-72582-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics