Abstract
We show-case an application of information extraction methods, such as named entity recognition (NER) and relation extraction (RE) to a novel corpus, consisting of documents, issued by a state agency. The main challenges of this corpus are: 1) the annotation scheme differs greatly from the one used for the general domain corpora, and 2) the documents are written in a language other than English. Unlike expectations, the state-of-the-art transformer-based models show modest performance for both tasks, either when approached sequentially, or in an end-to-end fashion. Our experiments have demonstrated that fine-tuning on a large unlabeled corpora does not automatically yield significant improvement and thus we may conclude that more sophisticated strategies of leveraging unlabelled texts are demanded. In this paper, we describe the whole developed pipeline, starting from text annotation, baseline development, and designing a shared task in hopes of improving the baseline. Eventually, we realize that the current NER and RE technologies are far from being mature and do not overcome so far challenges like ours.
The extended notes for invited talk “When CoNLL-2003 is not Enough: are Academic NER and RE Corpora Well-Suited to Represent Real-World Scenarios?” delivered by Ivan Smurov.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The corpus is open and available online on the Ministry of Economic Development of the Russian Federation website.
- 2.
- 3.
Obtained after the shared task deadline.
References
Anisimovich, K., Druzhkin, K., Minlos, F., Petrova, M., Selegey, V., Zuev, K.: Syntactic and semantic parser based on abbyy compreno linguistic technologies. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”], Bekasovo, Russiavol. 2, pp. 90–103 (2012)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Cardellino, C., Teruel, M., Alemany, L.A., Villata, S.: A low-cost, high-coverage legal named entity recognizer, classifier and linker. In: Proceedings of the 16th Edition of the International Conference on Artificial Intelligence and Law, pp. 9–18 (2017)
Carreras, X., Màrquez, L.: Introduction to the CoNLL-2004 shared task: Semantic role labeling. In: Proceedings of the Eighth Conference on Computational Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004, pp. 89–97. Association for Computational Linguistics, Boston (2004). https://www.aclweb.org/anthology/W04-2412
Clark, K., Luong, M.T., Manning, C.D., Le, Q.: Semi-supervised sequence modeling with cross-view training. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1914–1925 (2018)
Da San Martino, G., Barrón-Cedeño, A., Wachsmuth, H., Petrov, R., Nakov, P.: SemEval-2020 task 11: detection of propaganda techniques in news articles. In: Proceedings of the 14th International Workshop on Semantic Evaluation. SemEval 2020, Barcelona, Spain (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)
Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali, R.: Named entity recognition and resolution in legal text. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 27–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12837-0_2
Gordeev, D., Davletov, A., Rey, A., Akzhigitova, G., Geymbukh, G.: Relation extraction dataset for the russian language. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”] Moscow, Russia (2020)
Hendrickx, I., et al.: SemEval-2010 task 8: multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 33–38. Association for Computational Linguistics, Uppsala (2010). https://www.aclweb.org/anthology/S10-1006
Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., Weischedel, R.: Ontonotes: the 90% solution. In: Proceedings of the Human Language Technology Conference of the NAACL, Companion, NAACL-Short 2006, vol. Short Papers, p. 57–60. Association for Computational Linguistics, USA (2006)
Huang, C.C., Lu, Z.: Community challenges in biomedical text mining over 10 years: success, failure and the future. Briefings Bioinf. 17(1), 132–144 (2015)
Ivanin, V., et al.: Rurebus-2020 shared task: Russian relation extraction for business. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”], Moscow, Russia (2020)
Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)
Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual transformers for russian language. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”], pp. 333–339 (2019)
Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition, pp. 260–270 (2016)
Leitner, E., Rehm, G., Moreno-Schneider, J.: Fine-grained named entity recognition in legal documents. In: Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-Vetter, Y. (eds.) SEMANTiCS 2019. LNCS, vol. 11702, pp. 272–287. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33220-4_20
Leitner, E., Rehm, G., Moreno-Schneider, J.: A dataset of german legal documents for named entity recognition. arXiv preprint arXiv:2003.13016 (2020)
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, pp. 1064–1074 (2016)
Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT, pp. 2227–2237 (2018)
Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. In: Proceedings of the 2nd Workshop on Representation Learning for NLP, pp. 252–256 (2017)
Starostin, A., et al.: Factrueval 2016: Evaluation of named entity recognition and fact extraction systems for Russian. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”] pp. 702–720 (2016)
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: Brat: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 102–107. Association for Computational Linguistics (2012)
Strauss, B., Toma, B., Ritter, A., De Marneffe, M.C., Xu, W.: Results of the wnut16 named entity recognition shared task. In: Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT), pp. 138–144 (2016)
Teruel, M., Cardellino, C., Cardellino, F., Alemany, L.A., Villata, S.: Legal text processing within the mirel project. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018)
Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: Language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003, vol. 4, p. 142–147. Association for Computational Linguistics (2003)
Walker, C., Strassel, S., Medero, J., Maeda, K.: ACE 2005 Multilingual Training Corpus. LDC2006T06. Philadelphia: Linguistic Data Consortium (2006)
Weber, L., Münchmeyer, J., Rocktäschel, T., Habibi, M., Leser, U.: Huner: improving biomedical NER with pretraining. Bioinformatics 36(1), 295–302 (2020)
Wu, S., He, Y.: Enriching pre-trained language model with entity information for relation classification. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2361–2364 (2019)
Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging with hierarchical reccurent networks. arXiv preprint arXiv:1703.06345 (2017)
Zhang, Y., Zhong, V., Chen, D., Angeli, G., Manning, C.D.: Position-aware attention and supervised data improve slot filling. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017), pp. 35–45 (2017). https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
Zuev, K.A., Indenbom, M.E., Judina, M.V.: Statistical machine translation with linguistic language model. In: Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”], Bekasovo, Russia, vol. 2, pp. 164–172 (2013)
Acknowledgements
Work on maintenance of the annotation system, discussions of results, and manuscript preparation was carried out by Elena Tutubalina, Vladimir Ivanov, Tatiana Batura and supported by the Russian Science Foundation grant no. 20-11-20166. Ekaterina Artemova and Veronika Sarkisyan worked on text annotation, discussions of results, and manuscript. Their work was supported by the framework of the HSE University Basic Research Program and Russian Academic Excellence Project “5–100”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ivanin, V. et al. (2021). RuREBus: A Case Study of Joint Named Entity Recognition and Relation Extraction from E-Government Domain. In: van der Aalst, W.M.P., et al. Analysis of Images, Social Networks and Texts. AIST 2020. Lecture Notes in Computer Science(), vol 12602. Springer, Cham. https://doi.org/10.1007/978-3-030-72610-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-72610-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72609-6
Online ISBN: 978-3-030-72610-2
eBook Packages: Computer ScienceComputer Science (R0)