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Abstract. Deep learning models suffer from a phenomenon called ad-
versarial attacks: we can apply minor changes to the model input to
fool a classifier for a particular example. The literature mostly considers
adversarial attacks on models with images and other structured inputs.
However, the adversarial attacks for categorical sequences can also be
harmful. Successful attacks for inputs in the form of categorical sequences
should address the following challenges: (1) non-differentiability of the
target function, (2) constraints on transformations of initial sequences,
and (3) diversity of possible problems. We handle these challenges using
two black-box adversarial attacks. The first approach adopts a Monte-
Carlo method and allows usage in any scenario, the second approach uses
a continuous relaxation of models and target metrics, and thus allows a
usage of state-of-the-art methods for adversarial attacks with little ad-
ditional effort. Results for money transactions, medical fraud, and NLP
datasets suggest that the proposed methods generate reasonable adver-
sarial sequences that are close to original ones, but fool machine learning
models.

Keywords: Adversarial attack · Discrete Sequential data · Natural Lan-
guage Processing.

1 Introduction

The deep learning revolution has led to the usage of deep neural network-based
models across all sectors in the industry: from self-driving cars to oil and gas.
However, the reliability of these solutions are questionable due to the vulner-
ability of almost all of the deep learning models to adversarial attacks [1] in
computer vision [2,3], NLP [4,5], and graphs [6]. The idea of an adversarial at-
tack is to modify an initial object, so the difference is undetectable to a human
eye, but fools a target model: a model misclassifies the generated object, whilst
for a human it is obvious that the class of the object remains the same [7].
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Fig. 1. Top figure: learning of our seq2seq model with the masking of tokens in an
initial sequence. We also use beam search and an attention mechanism. Bottom figure:
our adversarial attack, modification of a sequence z in the embedded state to be sure
that the decoding of the adversarial sequence D(z′) is close to the decoding D(z),
whilst the classifier score is significantly different.

For images we can calculate derivatives of the class probabilities with respect
to the colour of pixels in an input image. Thus, moving along this direction we
can apply slight alterations to a few pixels, and get a misclassified image, whilst
keeping the image almost the same. For different problem statements attacks
can be different, but in general a continuous space of images is rich enough for
providing adversarial images.

The situation is different for sequential categorical data due to its discrete
nature and thus absence of partial derivatives with respect to the input. The
space of possible modifications is also limited. For certain problems a malicious
user can not modify an object arbitrarily. For example, whilst trying to increase
a credit score we can not remove a transaction from the history available to
the bank; we only add another transaction. Both of these difficulties impose
additional challenges for creation of adversarial attacks for categorical sequential
data.

A survey on adversarial attacks for sequences [4,5] presents a list of possible
options to overcome these difficulties. With respect to white-box attacks, there
are two main research directions. Many approaches work with the initial space of
tokens as input attempting to modify these sequences of tokens using operations
like addition or replacement [8,9,10]. Another idea is to move into an embedded
space and leverage on gradients-based approaches in this space [11]. We also
note that most of these works focus on text sequence data.

We propose two approaches that can alleviate the aforementioned problems
with differentiability and a limited space of modification actions, and work in
the space of embedded sequences. The first approach is based on a Monte-Carlo
search procedure in an embedded space, treating as the energy the weighted sum
of the distance between the initial sequence and the generated one and the differ-
ence between the probability scores for them. The first term keeps two sequences
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Table 1. Examples of adversarial sequences generated by the baseline HotFlip and our
CASCADA approaches for the AG news dataset. HotFlip often selects the same strong
word corrupting the sequence semantics and correctness. CASCADA is more ingenious
and tries to keep the semantics, whilst sometimes changing the sequence too much.

Initial sequence x HotFlip adversarial CASCADA adversarial

jayasuriya hits back jayasuriya arafat back snow hits over back
for sri lanka for sri lanka for sri lanka
determined jones jumps arafat jones jumps ibm music jumps
into finals into finals into match
tiny memory card for tiny memory card for artificial memory card for
mobiles launched economy economy hewitt pistons
nokia plots enterprise move nokia plots economy economy nokia steers enterprise move
sony shrinking the ps sony shrinking economy ps sony blames the indies cross
sackhappy d bags bills google d bags bills textile d bags bills
tunisian president ben nba president ben bayern hat toshiba
ali reelected ali reelected got reelected

close to each other, whilst the second term identifies our intention to fool the
classifier and generate a similar but misclassified example for a particular object.
This approach is universal, as it does not require derivatives for the first and
second terms whilst traversing the embedded space. The number of hyperpa-
rameters remains small, and each hyperparameter is interpretable with respect
to the problem statement. The second approach illustrates adopts differentiable
versions of sequential distance metrics. We use a trained differentiable version
of the Levenshtein distance [12] and a surrogate classifier defined on embed-
dings of sequences. In this case our loss is differentiable, and we can adopt any
gradient-based adversarial attack. The two approaches, which we name MCMC
and CASCADA attacks, are summarised in Figure 1. Examples of generated
sequences for the AG News dataset are presented in Table 1.

The generative model for adversarial attacks is a seq2seq model with mask-
ing [13]. So, the constructed RNN model can be reused for generating adversarial
attacks based on these two approaches and creating adversarial attacks with a
target direction as well as training embeddings for sequences. The validation of
our approaches includes testing on diverse datasets from NLP, bank transactions,
and medical insurance domains.

To sum up, we consider the problem of adversarial attack generation for cat-
egorical sequential data. The main contributions of this work are the following.

– Our first approach is based on an adaptation of Markov Chain Monte Carlo
methods.

– Our second approach uses a continuous relaxation of the initial problem.
This makes it possible to perform a classic gradient-based adversarial attack
after applying a few new tricks.

– We construct seq2seq models to generate adversarial attacks using an atten-
tion mechanism and a beam search, and test the performance for attacking
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models based on different principles, e.g. logistic regression for TF-IDF fea-
tures from a diverse set of domains.

– Our adversarial attacks outperform the relevant baseline attacks; thus it is
possible to construct effective attacks for categorical sequential data.

2 Related work

There exist adversarial attacks for different types of data. The most popular
targets for adversarial attacks are images [14,15], although some work has also
been done in areas such as graph data [16] and sequences [17].

It seems that one of the first articles on the generation of adversarial attacks
for discrete sequences is [17]. The authors correctly identify the main challenges
for adversarial attacks for discrete sequence models: a discrete space of possible
objects and a complex definition of a semantically coherent sequence. Their
approach considers a white-box adversarial attack with a binary classification
problem. We focus on black-box adversarial attacks for sequences. This problem
statement was considered in [18,9,19].

Extensive search among the space of possible sequences is computationally
challenging [20], especially if the inference time for a neural network is significant.
Authors of [18] identify certain pairs of tokens and then permute their positions
within these pairs, thus working directly on a token level. Another black-box
approach from [9] also performs a search at the token level.

It is also possible to use gradients for embeddings [11]. However, the authors
of [11] limit directions of perturbations by moving towards another word in an
embedded space, and the authors of [11,21] traverse the embedding space, whilst
achieving limited success due to the outdated or complex categorical sequence
models. Also, they consider only general perturbations and only NLP problems,
whilst it is important to consider more general types of sequences.

As we see from the current state of the art, there is still a need to identify
an effective end2end way to explore the space of categorical sequences for the
problem of adversarial attacks generation. Moreover, as most of the applications
focus on NLP-related tasks, there is still a room for improvement by widening
the scope of application domains for adversarial attacks on categorical sequences.
Among the methods presented in the literature we highlight HotFlip [10] as the
most justified option, so we use compare it with our embeddings-based methods.

3 Methods

We start this section with the description of the general sequence-to-sequence
model that we use to generate adversarial sequences, with some necessary details
on model training and structure. We then describe the classifier model that we
fool using our adversarial model. Next, we describe, how our seq2seq model is
used to generate adversarial examples and present our MCMC and CASCADA
adversarial attacks. Finally, we provide a description of how to obtain a differ-
entiable version of the Levenshtein distance.
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3.1 Models

Sequence-to-sequence models. Seq2seq models achieve remarkable results in var-
ious NLP problems, e.g. machine translation [22], text summarisation [23], and
question answering [24]. These models have an encoder-decoder architecture: it
maps an initial sequence x to dense representation using an encoder z = E(x)
and then decodes it using a decoder x′ = D(z) back to a sequence.

Following the ideas from CopyNet [25], we use a seq2seq model with an
attention mechanism [22] for the copying problem and train an encoder and a
decoder such that x′ ≈ x. The final network is not limited to copying the original
sequence, but also discovers the nature of the data providing a language model.
As the encoder E(x) we use a bi-directional LSTM [26], and as the decoder
D(x) we use a uni-directional LSTM with Beam Search [27].

To train the model we mask some tokens from an input sequence, whilst
trying to recover a complete output sequence, adopting ideas from MASS [28]
and training a CopyNet [25] with the task to reconstruct an initial sequence.
Masking techniques include swap of two random tokens, random deletion, ran-
dom replacement by any other token, and random insertion. The objective for
training the model is cross-entropy [29]. As we do not need any labelling, this
unsupervised problem is easy to define and train.

In addition, we input a set of possible masking operations m = {m1, . . . ,ms}.
An example of such a set is m = {AddToken,Replace,Delete}. We provide m
to the model in addition to input sequence x. As another example, for bank
transactions, we can only use the addition of new tokens and m = {AddToken}.

Classification models. As a classifier C(x) we use a one-layer bi-directional

LSTM with one fully-connected layer over the concatenation of the mean 1
d

∑d
i=1 zi

and max(z) of a hidden state z = {z1, . . . , zd} or a logistic regression with TF-
IDF features. A classifier takes a sequence x as input and outputs class proba-
bilities (a classifier score) C(x) ∈ [0, 1]k, where k is the number of classes or a
class label c(x) on the base of class probability scores C(x).

3.2 Generation of adversarial sequences

We generate adversarial sequences for a sequence x by a targeted modification
of a hidden representation z = E(x) given by encoder E(·) in such a way that
the decoder generates an adversarial sequence A(x) that is (1) similar to the
original sequence and (2) have a lower probability of a targeted label.

The general attack scheme is presented in Algorithm 1. This attack works
under the black-box settings: an attacker has no access to the targeted model.
The algorithm uses an encoder, a decoder, word error rate WER between a
generated and the initial sequences and a classifier that outputs class probability
C(x), and a class label c(x). Slightly abusing the notation we refer to C =
C(x) as the classifier score for a class we want to attack in case of multiclass
classification. CASCADA attack also uses a surrogate classifier and a surrogate
word error rate distance.
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The attack algorithm generates a set {z1, . . . , zN} of adversarial candidates
via consecutive steps zi := G(zi−1) in the embedded space starting at z and
selects the best one from the set. The difference between algorithms is in which
function G(z) we use.

Input: Number of steps N
Data: Original sequence x

and true label cx
Result: Adversarial

sequence x∗ = A(x)
z0 = E(x);
for i← 1 to N do

% attack generator step;
zi := G(zi−1);
Ci := C(D(z)) % score;
generate class label ci
from score Ci;
wi = WER(D(zi),x);

end
if ∃i s.t. ci 6= cx then

x∗ = xi s.t.
i = arg mini:ci 6=cx wi;

else
x∗ = xi s.t.
i = arg mini Ci;

end
Algorithm 1: The general at-
tack scheme

Input: Embedding z,
proposal variance σ2,
energy temperatures
σwer, σclass, initial
class label c0

Result: Attacked embedding
z′ = G(z)

ε ∼ N (0, σ2I);
z′ := z + ε;
x′ := D(z′);
C := C(x′);
generate class label c from
score C;
w = WER(x′,x);

α = exp
(
−w
σwer

+ −[c0=c]
σclass

)
;

u ∼ U([0, 1]);
if α < u then

z′ := z;
end

Algorithm 2: The MCMC at-
tack defines a generator step
zi := G(zi−1), [·] is the indicator
function

Näıve random walk attack. The natural approach for generating a new se-
quence x∗ in an embedded space is a random jump to a point z∗ in that embed-
ded space from the embedding of an initial sequence z = E(x). An adversarial
candidate is a decoder output x∗ = D(z∗). As we have a total budget N , we
make up to N steps until we find a sufficiently good sequence. Whilst this al-
gorithm seems to be quite simple, it can provide a good baseline against more
sophisticated approaches, and can work well enough for an adequate embedding
space.

Formally, for this variation of Algorithm 1 we use z′ = G(z) = z + ε, ε ∼
N (0, σ2I) with σ2 being a hyperparameter of our algorithm. Note that in the
case of a random walk we defer from the general attack scheme, and each time
use the same initial sequence z0 = E(x) instead of zi−1 to get a new sequence zi.

MCMC walk. Markov chain Monte Carlo (MCMC) can lead to a more effec-
tive approach. We generate a new point using Algorithm 1 with G(·) defined
in Algorithm 2 by an MCMC walk. This walk takes into account the similar-
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ity between the initial and the generated sequences and the adversity of the
target sequence, so we can generate point zi := G(zi−1) at each step more ef-
fectively. Similar to the näıve random walk, the MCMC uses the noise variance
for embedded space σ. In addition, the MCMC walk approach has temperature
parameters σwer and σclass that identify the scale of the energy we are seeking,
and what is the trade-off between the distance among sequences and the drop
in the classification score.

The MCMC random walk is designed to make smarter steps and traverses
through the embedded space.

CASCADA attack. Näıve and MCMC attacks can be inefficient. Both of these
approaches are computationally expensive for deep seq2seq architectures.

The CASCADA (CAtegorical Sequences Continuous ADversarial Attack) at-
tack is an end-to-end approach, which computes the WER metric and runs a
beam search only once.

In the CASCADA approach we use Deep Levenshtein modelWERdeep(z, z
′) [12]

and a surrogate classification model Cs(z) on top of a seq2seq CopyNet. Both
of these models act in the embeddings space. Therefore, we can evaluate deriva-
tives with respect to arguments of WERdeep(z0, z) and Cs(z) inside the target
function, thus making it possible to run a gradient-based optimisation that tries
to select the adversarial sequence with the best score.

We search for a minimum of a function Cs(z) + λWERdeep(z, z0) with re-
spect to z. The hyperparameter λ identifies a trade-off between trying to get a
lower score for a classifier and minimising the distance between z and the initial
sequence z0. So, the attack z′ is a solution of the optimisation problem:

z′ = arg min
z
Cs(z) + λWERdeep(z, z0).

After the generation of a set of candidates during the gradient descent op-
timisation z1, . . . , zN , we apply the decoder to each candidate, obtaining x1 =
D(z1), . . . ,xN = D(zN ) as a set of adversarial candidates.

Deep Levenshtein. To make gradient-based updates to an embedded state, we
use a differentiable version of the Levenshtein distance function [30]. We use the
Deep Levenshtein distance proposed by [12] and considered also in [30]. In our
case, WER is used instead of the Levenshtein distance, since we work on the
word level instead of the character level for NLP tasks, and for non-textual tasks
there are simply no levels other than “token” level.

To collect the training data for each dataset we generate about 2 million
pairs. For each pair we apply masks similar to CopyNet, obtaining an original
sequence and a close but different sequence. We have also added pairs composed
of different sequences from the training data for a better coverage of distant

sequences. Our target is WERnorm(x,y) = WER(x,y)
max(|x|,|y|) . We train a model M(z)

with the objective ‖ 12 (cos(M(E(x)),M(E(y))) + 1) − WERnorm(x,y)‖. The
mean absolute error for the learned Deep Levenstein distance WERdeep(z, z

′) =
1
2 (cos(M(z),M(z′)) + 1) is 0.15 for all considered datasets.
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4 Experiments

In this section we describe our experiments. The datasets and the source code
are published online3.

4.1 Datasets

To test the proposed approaches we use NLP, bank transactions, and medical
sequence datasets.

We use NLP dataset AG news [31] dedicated to topic identification. The
four largest classes from the corpus constitute our dataset. The number of train-
ing samples for each class is 30, 000 and the number of test samples is 1, 900.
We also use a transactions dataset, aimed at predicting gender 4. We use
sequences of transactions codes (gas station, art gallery, etc.) and transaction
amounts as an input. We also supplement these datasets with another dataset
from the medical insurance [20] domain. The goal is to detect frauds based on
a history of visits of patients to a doctor. Each sequence consists of visits with
information about a drug code and amount of money spent for each visit.

For the attacked logistic regression model with TF-IDF features as inputs,
the macro-average ROC AUC scores for Transcations-GENDER, Healthcare In-
surance and AG News datasets are 0.70, 0.74, 0.88, and 0.96 correspondingly.

Preprocessing of the datasets. For AG news we use a standard prepro-
cessing procedure. For the healthcare insurance dataset each sequence of tokens
consists of medical codes or the procedure assigned after the next visit to a
clinic, and a label if the entire sequence for a patient is a fraud or not, with the
percentage of frauds in the available dataset being 1.5% and total number of
patients being 381, 013.

For the transactions datasets the preprocessing is more complex, so we de-
scribe it separately. For the gender prediction dataset we compose each token
from the transaction type, the Merchant Category Code (MCC), and the trans-
action amount bin. We split all amounts into decile bins and then sort them,
so index 0 corresponds to the cheapest purchases and index 9 corresponds to
the most expensive purchases. An example encoding of a token from a sequence
of transactions is 4814 1030 3 with 4814 being the MCC code, 1030 being the
transaction type and 3 the index of the decile amount bin. Each sequence corre-
sponds to transactions during the last three days with the mean sequence length
being 10.25.

4.2 Metrics

The two types of metrics for the evaluation of the quality of adversarial attacks
on sequences are the difference in the classifier score between an initial and a
generated adversarial sequences and the distance between these sequences.

3 The code is available at
https://github.com/fursovia/dilma/tree/master. The data is available at
https://www.dropbox.com/s/axu26guw2a0mwos/adat_datasets.zip?dl=0.

4 https://www.kaggle.com/c/python-and-analyze-data-final-project/data

https://github.com/fursovia/dilma/tree/master
https://www.dropbox.com/s/axu26guw2a0mwos/adat_datasets.zip?dl=0
https://www.kaggle.com/c/python-and-analyze-data-final-project/data
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To measure the performance of the proposed approaches we use three metrics
that identify the accuracy drop after adversarial attacks: the ROC AUC drop,
the accuracy drop, and the mean classifier score drop. To measure the difference
for the new adversarial sequences we use the word error rate (WER) between
the initial and generated adversarial sequences.

We also propose a new metric for evaluating adversarial attacks on classifiers
for categorical sequences, which combines distance-based and score-based ap-
proaches. To get a more realistic metric we perform a normalisation using WERs
between the initial and adversarial sequences, which we call the normalised accu-

racy drop NAD(A) = 1
|Z|
∑
i∈Z 1{c(xi) 6= c(A(xi))}

(
Li−WER(A(xi),xi)

Li−1

)
, where

c(x) outputs class labels instead of probabilities C(x), Z = {i|c(xi) = yi}, and Li
is the maximum length of xi and the adversarial sequence x′i = A(xi) generated
by the adversarial attack A.

4.3 Main experiment for adversarial attacks

We compare our approach with the current state of the art, HotFlip [10]. HotFlip
at each step selects the best token to change, given an approximation of partial
derivatives for all tokens and all elements of the dictionary. To complete the
HotFlip attack in our setting we generate N sequences with beam search and
then follow our general selection procedure described in Algorithm 1.

We run experiments to keep WER similar for the four considered approaches:
HotFlip, random walk attack, MCMC walk attack, and CASCADA. We se-
lect hyperparameters to get approximately similar WER scores for different
approaches. We generate N = 100 sequences for each of the four approaches and
select the best one according to the criterion described above.

In Table 2 we present results for the proposed approaches, whilst attacking
an independent logistic regression model with TF-IDF features and using LSTM
model as a surrogate classifier. We see that embedding-based approaches provide
decent performance and are a better way to generated more adversarial examples,
while NAD metric puts too significant emphasis onWER values when comparing
different approaches.

4.4 Constrained adversarial attack

We compare the performance of general and constrained adversarial attacks. In
the first case the attack applies all possible modifications to sequences. In the
second case only certain perturbations are allowed, e.g. an addition of a token
or swapping two tokens. The comparison of performances for various attacks is
presented in Table 3: all types of attacks have comparable performances for our
CASCADA approach.

4.5 Reliability study

The selection of hyperparameters often affects the performance of an adversarial
attack. We run 599 different hyperparameters configurations for training seq2seq
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Table 2. Fooling logistic regression with TF-IDF representations as inputs by running
the considered attacks on the four diverse datasets. We maximise metrics with the ↑
signs and minimise metrics with the ↓ signs. Embedding-based methods work better
when looking both at perplexity and accuracy drops.

Transactions ROC AUC Accuracy Probability Normalised Log NAD ↑
Gender drop ↑ drop ↑ drop ↑ WER ↓ perplexity ↓

Random walk 0.539 0.40 0.189 0.561 4.29 0.334
HotFlip 0.243 0.26 0.091 0.100 5.15 0.623

MCMC walk 0.640 0.55 0.245 0.719 4.28 0.333
CASCADA 0.361 0.32 0.121 0.198 4.49 0.426

AG News

Random walk 0.406 0.66 0.487 0.704 5.21 0.274
HotFlip 0.342 0.67 0.477 0.218 6.76 0.723

MCMC walk 0.452 0.72 0.525 0.757 5.16 0.270
CASCADA 0.422 0.62 0.492 0.385 6.29 0.494

Healthcare insurance

Random walk 0.566 0.47 0.094 0.725 4.90 0.258
HotFlip 0.778 0.92 0.294 0.464 6.75 0.371

MCMC walk 0.364 0.29 0.062 0.695 4.50 0.194
CASCADA 0.131 0.26 0.045 0.492 4.28 0.106

Table 3. Constrained adversarial attacks on logistic regression with TF-IDF using
various masking tokens for the AG news dataset. Log perplexity is almost similar for
all approaches.

Masker Accuracy Normalised NAD ↑
drop ↑ WER ↓

No constraints 0.62 0.39 0.492
Add 0.62 0.51 0.382
Replace 0.59 0.50 0.366
Swap 0.61 0.52 0.333

models, trained with attention and masking, and the CASCADA adversarial
attack based on this model. The results are presented in Figure 2. We observe
that by varying hyperparameters, we select a trade-off between the similarity of
initial sequence and an adversarial one and corresponding classifier probability
drop. Moreover, varying of hyperparameters for a selected trade-off we observe
robust results without significant drop of quality for particular runs or particular
configurations.

5 Conclusion

A construction of an adversarial attack for a categorical sequence is a challenging
problem. We consider two approaches to solve this problem: directed random
modifications and two differentiable surrogates, for a distance between sequences
and for a classifier, that act from an embedded space. The first approach is
based on the application of MCMC to generated sequences, and the second
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Fig. 2. Mean WER and accuracy drops for various configurations of hyperparameters
for the Transactions Gender dataset: the learning rate, the Deep Levenshtein weight,
and the beam number. Mean WER and accuracy drop are inversely related as expected,
whilst the seq2seq model is robust against changes of hyperparameter values.

approach uses surrogates for constructing gradient attacks. At the core of our
approaches lies a modern seq2seq architecture, which demonstrates an adequate
performance. To improve results we adopt recent ideas from the NLP world,
including masked training and the attention mechanism.

For considered applications, which include NLP, bank card transactions, and
healthcare, our approaches show a reasonable performance with respect to com-
mon metrics for adversarial attacks and sequence distances. Moreover, we can
limit the space of possible modifications, e.g. use only addition operations during
an adversarial sequence generation.

Acknowledgments
The work of Alexey Zaytsev was supported by RSF grant 20-71-10135. The work
of Evgeny Burnaev was supported by RFBR grant 20-01-00203.

References

1. X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses
for deep learning,” IEEE transactions on neural networks and learning systems,
vol. 30, no. 9, pp. 2805–2824, 2019.

2. N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in com-
puter vision: A survey,” IEEE Access, vol. 6, pp. 14410–14430, 2018.

3. V. Khrulkov and I. Oseledets, “Art of singular vectors and universal adversarial
perturbations,” in IEEE CVPR, pp. 8562–8570, 2018.

4. W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial attacks on deep-
learning models in natural language processing: A survey,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 11, no. 3, pp. 1–41, 2020.

5. W. Wang, B. Tang, R. Wang, L. Wang, and A. Ye, “A survey on adversarial attacks
and defenses in text,” arXiv:1902.07285 preprint, 2019.

6. L. Sun, J. Wang, P. S. Yu, and B. Li, “Adversarial attack and defense on graph
data: A survey,” arXiv:1812.10528 preprint, 2018.

7. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” in ICLR, 2017.

8. S. Samanta and S. Mehta, “Towards crafting text adversarial samples,”
arXiv:1707.02812 preprint, 2017.



12 Authors Suppressed Due to Excessive Length

9. B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep text classification can
be fooled,” in IJCAI, 2017.

10. J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box adversarial ex-
amples for text classification,” in Annual Meeting of ACL, pp. 31–36, 2018.

11. M. Sato, J. Suzuki, H. Shindo, and Y. Matsumoto, “Interpretable adversarial per-
turbation in input embedding space for text,” in IJCAI, 2018.

12. S. Moon, L. Neves, and V. Carvalho, “Multimodal named entity recognition for
short social media posts,” in Conference of the North American Chapter ACL:
Human Language Technologies, pp. 852–860, 2018.

13. S. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio, “Gener-
ating sentences from a continuous space,” in SIGNLL CoNNL, pp. 10–21, 2016.

14. C. Szegedy, W. Zaremba, I. Sutskever, J. B. Estrach, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.

15. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in ICLR, 2014.
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