Skip to main content

Fast Approximation Algorithms for Stabbing Special Families of Line Segments with Equal Disks

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12602))

  • 790 Accesses

Abstract

An NP-hard problem is considered to stab a given set of n straight line segments on the plane with the smallest size subset of disks of fixed radii \(r>0,\) where the set of segments forms a straight line drawing \(G=(V,E)\) of a planar graph without proper edge crossings. To the best of our knowledge, only 100-approximation \(O(n^4\log n)\)-time algorithm is known (Kobylkin, 2018) for this problem. Moreover, when segments of E are axis-parallel, 8-approximation is proposed (Dash et al., 2012), working in \(O(n\log n)\) time. In this work another special setting is considered of the problem where G belongs to classes of special plane graphs, which are of interest in network applications. Namely, three fast \(O(n^{3/2}\log ^2n)\)-expected time algorithms are proposed: a 10-approximate algorithm for the problem, considered on edge sets of minimum Euclidean spanning trees, a 12-approximate algorithm for edge sets of relative neighborhood graphs and 14-approximate algorithm for edge sets of Gabriel graphs. The paper extends recent work (Kobylkin et al. 2019) where \(O(n^2)\)-time approximation algorithms are proposed with the same constant approximation factors for the problem on those three classes of sets of segments.

The work is carried out within the research, conducted at the Ural Mathematical Center. It is also supported by the Russian Foundation for Basic Research, project â„–-19-07-01243. The paper is a substantially extended version of the short paper Kobylkin, K., Dryakhlova, I.: Practical approximation algorithms for stabbing special families of line segments with equal disks. In: Kotsireas, I., Pardalos, P. (eds.) Learning and Intelligent Optimization, LION 2020. Lecture Notes in Computer Science, vol. 12096. Springer, Cham.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Its C++ implementation is built in the CGAL library (see https://www.cgal.org/), providing robust geometric computations.

References

  1. Boissonnat, J.D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 67–116. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33259-6_2

    Chapter  Google Scholar 

  2. Chan, T.M.: Dynamic geometric data structures via shallow cuttings. In: Proceedings of the 35th International Symposium on Computational Geometry, SoCG 2019, pp. 24:1–24:13 (2019)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Dash, D., Bishnu, A., Gupta, A., Nandy, S.: Approximation algorithms for deployment of sensors for line segment coverage in wireless sensor networks. Wirel. Netw. 19(5), 857–870 (2012)

    Article  Google Scholar 

  5. Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13, 163–180 (2002)

    Article  MathSciNet  Google Scholar 

  6. Jaromczyk, J., Toussaint, G.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  7. Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi diagram. In: Proceedings of the 1st International Symposium on Voronoi Diagrams in Science and Engineering, Tokyo, pp. 51–62 (2004)

    Google Scholar 

  8. Karavelas, M., Yvinec, M.: The Voronoi Diagram of Convex Objects in the Plane. Research report. RR-5023, INRIA. 27 p. (2003)

    Google Scholar 

  9. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3(3), 157–184 (1993)

    Article  MathSciNet  Google Scholar 

  10. Kobylkin, K.: Stabbing line segments with disks: complexity and approximation algorithms. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 356–367. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_33

    Chapter  Google Scholar 

  11. Kobylkin, K.: Constant factor approximation for intersecting line segments with disks. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 447–454. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_39

    Chapter  Google Scholar 

  12. Kobylkin, K.: Efficient constant factor approximation algorithms for stabbing line segments with equal disks, CoRR abs/1803.08341, 31 p. (2018). https://arxiv.org/pdf/1803.08341.pdf

  13. Kobylkin, K., Dryakhlova, I.: Approximation algorithms for piercing special families of hippodromes: an extended abstract. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 565–580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_40

    Chapter  Google Scholar 

  14. Matula, D., Sokal, R.: Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geogr. Anal. 12(3), 205–222 (1980)

    Article  Google Scholar 

  15. Motwani, R., Raghavan, P.: Randomized Algorithms, 476 p. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobylkin, K. (2021). Fast Approximation Algorithms for Stabbing Special Families of Line Segments with Equal Disks. In: van der Aalst, W.M.P., et al. Analysis of Images, Social Networks and Texts. AIST 2020. Lecture Notes in Computer Science(), vol 12602. Springer, Cham. https://doi.org/10.1007/978-3-030-72610-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72610-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72609-6

  • Online ISBN: 978-3-030-72610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics